The Vista 1 console comes in a standard configuration comprising:

- 32 or 22 motorized faders, with Studer FaderCase™
- 96 DSP channels, including 5.1 surround channels
- Powerful integrated Lexicon FX
- True broadcast monitoring, talkback, red light control and eight general-purpose control inputs/outputs (GPIO)
- Input level and gain reduction LED bargraph meter in every fader strip
- 6 high-resolution/VFD meter master levels
- Full-max minus (n-x) system for live two way operations
- Vista data format compatibility for easy transfer of console snapshots between different Vista consoles
- Integrated jingle player for immediate playback of eight different station identifier clips, background FX or other audio files from a jingle stick/USB memory device
- Studer Virtual Vista Colorline/oLED editor
- Snapshot automation
- Support for the new Studer Vista Compact Remote Bay over Ethernet or even WLAN
- Harm an HQ2i® support for controlling other devices such as power amplifiers or wireless microphone receivers from the Harm an Professional family of brands
- Ember and Pro-Bel protocol support for use with broadcast/newsroom automation systems
- Redundant PSU
- Standard I/O comprises
 - 32 high-quality mic/line inputs with phantom power and low cut filter
 - 12 32-channel line outputs
 - AES/EBU pairs input (with sample rate converters)
 - AES/EBU pairs output
 - Desk operator headphones
 - USB single player socket
 - Integrated on-screen optical MADI port
 - Slots for additional D2I m I/O cards (one double-width or two single-width cards), such as AoIP (Axia Livewire™), MADI, AES/EBU, ADAT, TIOE Cobram®o, A/Ne®, Doby® i, Digital DX, etc

The system can be extended by using additional Studer D2I m I/O frames accepting cards from the comprehensive D2I m I/O system programme
- Studer’s RELINK input/output sharing system allows sharing inputs and outputs with other Studer Vista and O nA ir consoles
- Support for the whole Studer stagebox range via a MADI link, such as the 4U Studer Compact Stagebox

The console is available in 22 and 32-fader versions. The 32-fader desk consists of 20 channel strips, optimised for input channel operations, and 12 additional versatile strips for operating output and input channels. By using the standard Vista screen, up to 52 outputs are under immediate control. A total of up to 96 channels can be accessed from the desk and laid out in any order with the Vistonics system giving instant control over all related channel functions.

The 22-fader version delivers Vista mixing power in applications such as OB trucks where space is at a premium.

The Vista 1 incorporates all the channel and bus processing you are likely to need, including parametric EQ and dynamics on input channels and buses with 30-band graphic equalisers also available on the busses.

The Vista 1 offers all the surround capabilities a user can dream of. Formats include 2CH stereo, LCR, LCRS and 5.1. The internal 5.1-to-stereo downmix function allows for simultaneous live productions in both formats.

The Vista 1 also includes Studer’s world-famous Virtual Surround Panning (VSP™), using not only amplitude, but also time delay and frequency response panning.

The Vista 1 is based on the well known and widely praised Vista 5 console which has found its home in all kinds of broadcast and theatre production facilities around the world.

Studer Vista Compact Remote

Full desk control from a portable Vistonics® controller

The Vista Compact Remote Bay has been designed for users seeking a slave or secondary desk to work in parallel with their Vista console. Typical applications are theatre or live sound installations where it is desired to control the sound balance from the auditorium.

It provides full control and monitoring functionality and can be used with all types of Vista consoles, running software V4.8 and up.

The unit is foldable, similar to a laptop computer. It consists of a control surface section with 12 high-quality motorised Penny&Giles faders, 40 channel rotary controls, a touch pad and a slide-in keyboard. The 19” touch screen can be folded down, thus protecting both screen and control hardware during transport and, at the same time, considerably reducing the unit’s size.

All navigation and control buttons available with the Virtual Vista application can be operated via the touch screen, instead of using a track ball or a mouse. The number of physical control elements is therefore reduced to the most important ones, such as faders, rotary controls, MU TE and PFL keys.
The operation of the Studer Vista 1 truly resembles that of an analogue console. The Vista 1 incorporates the unique and patented Studer Vistonics™ user interface which ensures quick and easy console operation – the key to a smooth workflow, short production time, and trouble-free live transmission.

In high pressure live situations, sound engineers depend on a mixing console which allows a fluent working process. Furthermore, a broadcast production facility with numerous engineers and freelancers (or one which is open to external production teams) must provide an easy-to-learn mixing console.

Vistonics is a patented technology for integrating rotary controls and buttons within a flat screen display, bringing visualization and operation into immediate proximity.

Vistonics allows the colour and shape of controls to be varied according to good ergonomic practice. A given audio function is always associated with the same colour and a parameter is always associated with the same icon displaying values graphically, just as intuitive as an analogue console, or even more so.

Every channel displays its settings of dynamics, equalizer and pan in the Vistonics touch area allowing instant overview of the entire console.

By pressing one button on the Global View area, the four Vistonics rotary controls on each channel change their function throughout the console, displaying the four most important parameters of the chosen audio function.

Operation
A simple touch on the desired function of the chosen channel opens up the complete function onto Vistonics. The operator can immediately adjust values by simply turning the rotary control and the changing value is immediately displayed graphically and numerically.

Vistonics icons are carefully designed and colour coded to represent a logical identifier and readout for each individual function: levels are displayed as bar graphs, time settings as clocks, frequencies as radio dials, to mention but a few. This allows easy recognition of the function itself as well as its state and approximate value. Functions have their dedicated colour: Equalisers and Filters are red, dynamics green and the pan yellow.

Pressing the physical button next to the rotary control activates additional settings such as switching individual bands on/off, setting slopes etc.
Vistonics™ Free your mind to mix

Multi-tasking
By touching the equalizer and the dynamics on the same channel for example, you will both open up onto Vistonics with their complete set of functions. The operator can immediately and easily adjust one function in relation to the other by adjusting for example, the equalizer and the compressor simultaneously.

It is also possible to adjust, for example, the EQ for two different channels at the same time.

There are no submenus – every parameter is just one button-press away, an essential feature in live situations.

Fast Copy/Paste
The console incorporates dedicated copy/paste keys for each audio function including high and low pass filters, EQ, dynamics, gain and delay. A simple button-press in the original channel and another in the target channel copies the settings as well as the current layer channel label.

FaderGlow™ Lighting the way to intuitive mixing

Supplementing the Vistonics user interface is Studer’s patented FaderGlow system, where faders are illuminated in different colours according to their function.

For example, if the settings of the graphic equalizer are copied to the console faders, these faders becoming red.

During a hectic live production, FaderGlow provides the operator with an instant overview of the console status by illuminating each fader in one of eight, freely-assignable colours. Suddenly it’s easy to see exactly where your channel groups are, dramatically improving reaction time and reducing the stress of mixing in an environment where there is no second chance.

Future-proof
The real advantage of Vistonics is that new features and functions (such as the recently introduced VistaMix system) can be easily integrated into the screen and controls. Creating a gang over the console makes the set-up quick and easy.

VirtualVista Training, setup or live control

VirtualVista is a powerful offline and online editor allowing system setup and/or live control of a Vista console from a PC. An indicator on all fader and control bay screens shows whether the editor is currently offline or online (i.e. connected to a desktop/core system or to a core only). The latter option can be thought of as an alternative remote control, or as a failsafe should power to the desk be lost.

VirtualVista is available via the Studer website.
Integrated into the Vista 1’s DSP core is Vista FX, a suite of effects processing engines capable of providing high-quality world-renowned Lexicon effects without resorting to external hardware and cabling. No less than 8 FX processors are available to be patched or inserted onto channels or groups, and these may be assigned by the user to provide mono, stereo or four-channel effects processors. The latter four-channel mode is especially useful on surround signals where effects may be applied to the four surround channels L/R/Ls/Rs.

These FX engines are powered by the console’s standard DSP hardware, and may be utilised without loss of mix processing power or I/O capacity. Since the processing is all within the DSP, control and adjustment of the effects is made through standard Vistonics operations, in just the same way as the external Vista FX units work with the larger Vista consoles. Assignment to a channel or bus is made in the patching windows, using the Channel Insert Point. Touching the FX icon opens up the FX parameter view on the Vistonics area ready for effect selection and parameter adjustment.

Available Lexicon FX types are:
- Reverbs – Hall/Plate/Chamber/Room
- Chorus/Flanger
- Delay
- Resonance
- Reverse
- Pitch Shift/Pitch Effects

Hundreds of different presets are available with up to 16 adjustable parameters per preset. All FX parameters may be copied/pasted between channels and into and out of the Clipboard Library and are stored as part of the snapshot/cue automation system so can be recalled quickly when needed.

Vista FX operation modes:
- 2 powerful FX Engines
 - Each Engine can run independently as:
 - 4x Mono Machines (Quad Mono)
 - 2x Stereo Machines (Dual Stereo)
 - 1x 2In-4Out Surround Machine
 - 1x 4In-4Out Surround Machine

Powerful effects, right at your fingertips.
Unique Output Control

The control requirements for outputs differ from those for inputs in several important ways. Excellent metering and fast adjustment of the output channel levels themselves are essential, but it is often the contributing channels to the master that are important to the user.

Usually level control of the contributing channels is handled via the input channel strips. The Control Bay offers a unique and revolutionary operational concept for controlling outputs, housing a Vistonics screen with 40 rotaries and switches and 12 faders, 10 of which line up with the Vistonics screen as in the fader bays. Any channel can be assigned to these faders but they are most useful for output channels such as VCA Masters or Group masters. In fact, the 10 faders have a separate 4 bank navigation system to the fader bays.

The rotaries on the Vistonics screen are equivalent to an additional 40 faders with 40 real time meters. Up to 40 master faders can be represented with direct access to level control of the master. As each control is immediately adjacent to its associated meter which includes headroom and overload indication, the operator’s reaction is completely intuitive – “where you look is where you control”.

A particularly important function of the rotaries is to call up all of the level controls of the contributing channels of any of the masters displayed on the faders below. A “Contribution” button above each fader provides reverse bus interrogation, “pulling” all of the faders of the contributing channels to the rotaries above with channel name and of course real time meter.

The user can even assign further channels to the masters from the Vistonics screen directly. This reverse way of working offers the user incredible speed of operation for making small balance changes without having to go to input faders.

Comprehensive metering

The Vista 1 provides several important metering possibilities. Each channel strip has a 20 segment stereo bargraph meter and secondary meters for Gain Reduction and N-1 output level, with a 6-channel master meter freely assignable to read almost any bus signal using the assign buttons below it.

To help comply with the recent Loudness directives, external loudness metering is available as an option in the form of the RTW TM3 meter, which fits onto the Vista Meterbridge and picks up the feeds from the monitor outputs.

System Integration

Using a number of protocols including Pro-Bel and EMBER, the Vista 1 can be perfectly integrated with router, vision control and newsroom automation systems, for example to allow remote interfacing of the router to third-party control systems in order to set or clear switcher crosspoints and for source label transfer. EMBER connectivity enables the external equipment to transfer signal labels and to control many channel parameters such as gains, faders, mutes, PFL of input channels, groups, masters, N-X and AUXes, plus the ability to save and recall desk settings.
Automatic Microphone Mixing

Live multi-microphone unscripted events such as talk-shows, game-shows and discussion panels, all suffer from microphone-spill and background noise from equipment. Each active microphone added to the mix makes the overall sound quality deteriorate. Room ambience is destroyed and feedback is more likely. The outcome is decreased intelligibility and unpleasant comb-filter effects (phase distortions).

Without VistaMix automatic mixing, an operator must manually adjust all the faders all of the time, leaving microphones of talking participants open, while closing the microphones of silent participants in order to reduce spill and background noise. The reaction time of a human operator is such that this often results in audible fades-ins of people who suddenly start talking unexpectedly. Also, changes in fader positions can quickly lead to disturbing changes of total ambience and noise level in the mix.

VistaMix offers the solution

Mimicking the action of a human operator but acting much more quickly, VistaMix increases gain for “talking” mics and reduces gain for all others, keeping the amount of total gain at a constant level to deliver a clean live mix.

Normally only one VistaMix is used at a time but several instances of VistaMix masters may be configured in a setup. VistaMix masters are available with 8 to 20 source channels. The result is a cleaner mix, fewer missed cues and fade-ups, increased clarity and speech intelligibility, a more natural room ambience and less possibility of feedback. And all faster than a human operator could mix it.
Outside broadcast vehicles present a series of challenges to equipment providers. As well as the inherent audio functionality required, consoles in particular need to be robust and reliable, have suitable redundancy be very space efficient as audio space is always a premium in OB vans, and be flexible enough to handle different types of production very easily.

Studer’s history in OB vehicle installations is well known. Not only does the Vista 1 fit perfectly into small spaces, but it is easily expanded through the D21m I/O and stageboxes. Integral MADI connectivity allows huge reductions in analogue patching systems.

The console itself offers all the functionality that may be required of it for OB:

- Full surround source management with up and down-mixing for sports events,
- Mix minus feeds,
- Audio-follows-video which can be tied to camera feeds and VT sources using several protocols, including Probel,
- Multitrack capabilities for music events
- Dynamic automation for live mixdown of multitrack audio
- Integral audio router which saves on further external equipment, with control possible from video switchers
- Remote stagebox systems using environment-proof fibre-based MADI connectivity

With the existing popularity of Studer Vista consoles in fixed and mobile broadcast facilities, most engineers will already be familiar with the operation of the console, but new users will find themselves easily assimilating the Vistonics user interface.

With its compact footprint, the Vista 1 is fully-equipped to handle large numbers of sources and feeds, along with full surround management, integral interfacing capabilities to numerous source formats including SDI, Dolby D/E, AES, MADI, CobraNet, Axia Livewire and more. The integral audio router functionality means that systems may be much more closely integrated and controlled than ever before.
When few or no sources of multi-channel parameters, 5.1) modelled around a few simple sources and create a realistic sound field (stereo up to even more than in stereo. The Vistonics touch area allow s a better overview while fast access to every single source parameter is provided.

A new approach to surround
With the Studer Vista 1 input channel, the engineer is able to have Input, EQ, Dynamics and Panning sections totally designed for premixed 5.1 input sources. The main goal is that he can adjust the most important parameters directly via touch on the Vista’s™ screen without the need to ‘split’ single mono or stereo channels to additional faders, where other important sources would be hidden and become unavailable. This is realised by introducing complete new parameters to balance the 5.1 signal using the Vistonics™ encoders.

Balancing the 5.1 signal
Studer has designed an innovative method to adjust a 5.1 signal to the requirements of the actual surround mix. New parameters have been created in order to give the engineer the most effective tools to balance the surround signal.

Once the balance is set, the 5.1 input channel can be handled in the same way as a mono or stereo input channel. Most importantly the signal is brought into the mix with one single fader and all the necessary adjustments can be made on one single channel strip. When EQ is needed it can be applied via EQ master parameters which are accessible again in the same way as on mono or stereo inputs. EQ is then applied to all of the surround signal legs except for the Lfe channel. Dynamics processing is handled in the same way. Working with these most important controls is what we expect to be about 95% of the surround engineer’s work.

Bus assign
With the now industry-accepted surround channel order of L R C Lfe Ls Rs, Studer has changed the bus order in Vista consoles to reflect this ITU standard. The newly introduced labelling of the buses in the Vista’s touch area allows a better overview and secure and quick assignment. However in daily broadcast work it is found that not all 5.1 sources are delivered in the standard format. An input order selector has been included, comparable to the ‘2CH mode’ (L to both, R to both, swapped, mono) in stereo channels. Input order is a very fast way to distangle different standard surround material, so that once it is on the 5.1 fader, everything is in ‘L R C Lfe Ls Rs’.

Creating directional imaging by adding phase and frequency spectrum information to commonly known amplitude panning VSP II gives the operator a creative tool to position a source within a sound field by using the channel’s pan control. The panning to the surround mix is achieved by generating the appropriate directionality and time delays on all speakers. Furthermore, the operator has the choice of different microphone simulation modes, which let him chose the characteristics of how every single mono source gets added to the surround image. Of course all these settings are captured in the consoles internal snapshot automation system.

Virtual Surround Panning allows the operator to create a realistic 5.1 sound field modelled around a few simple parameters. Simple handling of surround channels
If you’re making Multicast 5.1 and stereo broadcasts, and need 3G SDI and Dolby E audio distribution, the Studer Vista 1 will empower you for multichannel surround broadcasting now.

Option cards from the Studer D21 m I/O system include a dual-channel Dolby E decoder and a 3G SDI de-embedder/reembedder in which up to 16 channels of audio can be extracted from the video signal (including Dolby E signals) and patched to the console. After processing, signals can be re-embedded onto the SDI stream. Using such cards reduces weight and space in critical installations such as OB vehicles.

The Dolby E card accepts any AES/EBU stream encoded with Dolby E or Dolby Digital, decodes the stream within the input stage and then provides up to two sets of 8 channels to the console. The 3G SDI card accepts the embedded SDI signal via a standard coax BNC connector and also has a ‘Through’ BNC connector for passing the original SDI signal unaltered. Once de-embedded, the audio may be processed by the console and then returned to the I/O system to be re-embedded into the SDI stream for onward transmission via either or both of two BNC outputs.

Once a source within a sound field is selected the operators can begin to adjust the surround parameters. Balancing the 5.1 signal is no different than adjusting mono or stereo outputs.

Becoming an important tool for Vistonics™ overlays is the bus order. This allows the operator to add sources and take mono perfectly. It allows the operator to create a realistic sound field (stereo up to panorama. To complete this functionality, a new surround panning module is also available for stereo channels. Since there are still a significant number of stereo sources used in a typical surround production engineers also need to bring these into the 5.1 format.

With VSP II, mono sources can be positioned within a stereo or multichannel environment to produce a highly convincing surround panorama.
In addition to the standard functionality, the input channels provide several broadcast live production specific features. Dedicated controls for extensive snapshot filtering are available to deal with the most complex live productions. Dedicated buttons for talkback (e.g. to Direct Out, N-1 etc) and for user programmable functions provide more flexibility and ease during live operation. Dedicated Matrix busses can be configured which suits the fixed install application but can also offer a fast and easy method of handling complex headphone feeds in a broadcast environment. 16 dedicated Mute Groups are also available.

Stress-free outside source management

In the last few minutes before the studio goes on-air or the show starts, stress is at its highest and many things are happening at once. Problems with outside sources and reporters often induce a high stress factor; setting up the correct return feeds and talkback on-air needs to be as simple as possible. In some cases the n-1 feed may not be what the outside source wants to hear while waiting to go on-air. The Vista 1 offers a dedicated switch per channel that automatically sends the outside source and alternative signal to the n-1 whilst the outside source is not on-air.

When the outside source is put out-on-air (fader opened), the correct n-1 feed is automatically switched to the outside source without the user having to disable the switch manually. In addition, any number of outside sources are able to talk off line together in a conference mode (MPX), with the outside source automatically removed from the conference and sent the correct n-1 feed when put on-air.

On the spot playout

For ease of use, the Vista 1 contains an integrated jingle/spot player which accepts a variety of audio formats from a USB memory device, which may be triggered from 8 dedicated buttons on the surface.

DAW interfacing

Studer Vista consoles interface with the major DAW systems available on the market. Many DAW functions can now be directly controlled from the console, where innovative operating concepts such as StripSetup and Ganging bring DAW integration to a new level and greatly enhance the production workflow. Editing is faster; customers are happier. Simple configuration screens within the Vista system allow the operator to select the DAW control interface and enable it. Then, you can mix and match DAW channels alongside Vista channels. Directly at the channel fader tracks may be armed ready for record using console buttons. Additionally, the DAW gains features of the Vista consoles such as ganging.

No additional hardware is required and connection is made through a simple Ethernet link, rather than multiple MIDI cables typically found in other systems.

DAW systems currently supported by Vista are:

- ProTools
- SADiE
- Apple Logic Pro
- Steinberg Cubase
- Steinberg Nuendo
- Magic Sequia
- Merging Technologies Pyramix
- Samplitude
Theatre sound designers and console operators make some of the highest demands when it comes to efficient workflow on the heart of their audio system. Nothing must go wrong, while everything needs to be changed quickly! To enhance workflow processes from offline programming, rehearsals through to daily performances, Studer has developed special software which makes Vista consoles the ideal choice for cue-based theatre productions.

Sound designers now have a complete toolkit provided with the standard Vista Software which is available for the whole range of Studer Vista consoles. Together with the Vista’s already extensive facilities which suit Theatre sound, such as high input/output capacity, the acclaimed Vistonics™ user interface, very compact footprint and outstanding sonic performance, the Studer Vista series of consoles is the perfect choice for world class theatres.

Enhanced Theatre Cue Lists

To aid in rehearsal and show build cues containing a snapshot can now be created with a single button press. Cues can be comprehensively inserted and re-numbered, and cues can be automatically recalled via a precisely timed event to give the engineer an extra pair of hands.

Cues can also fire MIDI/MMC events, for example for SFX playback, where the MIDI ports can be muted for cue list navigation. Most importantly, the enhanced cue list now provides a large display of the current cue, as well as an indication of whether a snapshot is enabled or not clearly visible in the cue list.

Character/Actor Library Event handling

Characters in a production can be given any desired library entry (for example, a special EQ setting) on a cue by cue basis. This allows easy temporary or permanent adjustment of these library settings as well as a very straightforward way to replace the settings of an actor with replacement-actor or understudy settings.

There are two ways of applying library events to characters; firstly by using the two new Vistonics controls on the actual channel and secondly the large overview window where a list of all cues and all characters is provided.
The Vista 1 can be integrated easily within the Studer RELINK (Resource Linking) managed I/O sharing system, which can link numerous Studer consoles in various locations of a broadcast facility to allow audio input and output sharing across a wide network.

One of the benefits of the Studer RELINK system in comparison to others is that it is based totally on Studer’s existing SCore platform which is an integral part of the Studer console architecture, so no additional hardware or breakout boxes are required to complete the network. Communicating over TCP/IP with each other, any combination of Studer Vista and OnAir consoles, as well as Route 6000 can connect via RELINK.

RELINK is seamless, scalable, flexible, and can start with a simple connection between two Studer consoles, right through to multi-console systems using a two-step topology where all signals are matrixed through a central device, e.g. the Studer Route 6000 system.

Source selection is transparent, and signal labels are automatically transferred to the consuming locations, so the operator always knows what source is connected. Signal takeover between studios is seamless, so RELINK is well-suited for live transmission switchover. A resilient mic take-over mechanism ensures that mic control parameters such as analogue gain, phantom voltage, etc. are not unintentionally changed but require conscious take-over confirmation.

This example shows a (radio-) broadcast house where production studios and control rooms are located, in addition to the on-air studios in the same building. The production studios (Drama A, Drama B and Auditorium) are equipped with D21m stageboxes, connected to the Route 6000 in the MCR. In this way not only the two Vista 1 consoles in the production control rooms can use mic signals from the stageboxes, but also the four OnAir consoles can use these signals and if necessary also get control of the mic parameters.

The Vista 1 can be integrated easily within the Studer RELINK (Resource Linking) managed I/O sharing system, which can link numerous Studer consoles in various locations of a broadcast facility to allow audio input and output sharing across a wide network.

One of the benefits of the Studer RELINK system in comparison to others is that it is based totally on Studer’s existing SCore platform which is an integral part of the Studer console architecture, so no additional hardware or breakout boxes are required to complete the network. Communicating over TCP/IP with each other, any combination of Studer Vista and OnAir consoles, as well as Route 6000 can connect via RELINK.

RELINK is seamless, scalable, flexible, and can start with a simple connection between two Studer consoles, right through to multi-console systems using a two-step topology where all signals are matrixed through a central device, e.g. the Studer Route 6000 system.

Source selection is transparent, and signal labels are automatically transferred to the consuming locations, so the operator always knows what source is connected. Signal takeover between studios is seamless, so RELINK is well-suited for live transmission switchover. A resilient mic take-over mechanism ensures that mic control parameters such as analogue gain, phantom voltage, etc. are not unintentionally changed but require conscious take-over confirmation.

This example shows a (radio-) broadcast house where production studios and control rooms are located, in addition to the on-air studios in the same building. The production studios (Drama A, Drama B and Auditorium) are equipped with D21m stageboxes, connected to the Route 6000 in the MCR. In this way not only the two Vista 1 consoles in the production control rooms can use mic signals from the stageboxes, but also the four OnAir consoles can use these signals and if necessary also get control of the mic parameters.

The Vista 1 provides a simple and easy connection with its integral I/O consisting of 32 mic/line inputs, 32 line outputs, one 64ch optical MAD1 input and output port, and 8 stereo AES inputs & outputs.

By adding a MAD1 card to the Vista 1, any of the Studer Stageboxes are equipped with ultra low noise microphone amps and Studer advanced 48-bit floating point digital audio processing. All input channels can have direct outputs in addition to their internal routing to Group/Aux/Matrix busses, and to the main 5.1, LCR, LR or mono busses.

The Vista series consoles use the Studer D21m I/O system which provides a flexible and expandable high density 24-bit 96kHz capable audio interface. Available D21m I/O expansion cards (optional):

- Axia Livewire® AnalP
- 4-channel D-type Mic/Line In with 4 Direct Outputs
- 8-channel D-type Line In
- 8-channel D-type Line Out
- 8-channel D-type AES/EBU In/Out *
- MAD1 (RlHs or optical SC), max. 64 channels of I/O *
- 16-channel ADAT In/Out (optical)
- 16-channel TEDIF In/Out (D-type) *
- 8 to 16-channel SDIF (SDI/HD/3G) In or OI on BNC sockets
- 8 or 16-channel Dolby® E/Digital In on BNC sockets
- CobraNet® 32-channel In/Out on RSH sockets
- Aviom A-Net® 16-channel Out on RSH sockets
- EtherSound® 64-channel In/Out on RSH sockets *
- double-width cards

The Studer Compact Stagebox

The Compact Stagebox adds a cost-effective expansion option, offering a high density of I/O connections in only 4U of rack space. The modular unit is fully configurable but is offered with a standard configuration of 32 mic/line inputs and 16 line outputs. It is possible to equip the Compact Stagebox with an additional 16 mic/line input module instead of the output module, then providing 48 inputs. In this case, analogue or AES/EBU outputs can still be obtained on D-Type connectors via D21m cards fitted to the expansion slots.

The expansion slots for standard Studer D21m I/O cards may be used for interfaces connecting to most popular digital formats, including CobraNet® or Aviom A-Net® 16, EtherSound ADAT, TDI, SDI (SDI/HD/3G), Dolby® E and Dolby® Digital A. A MAD1 recording interface can be fitted to the expansion slots as well.

The unit comes complete with twin redundant power supplies, thermodynamically-controlled fan cooling and full LED status monitoring. An 8-channel SDIF interface is also provided.

The Vista series consoles use the Studer D21m I/O system which provides a flexible and expandable high density 24-bit 96kHz capable audio interface. Available D21m I/O expansion cards (optional):

- Axia Livewire® AnalP
- 4-channel D-type Mic/Line In with 4 Direct Outputs
- 8-channel D-type Line In
- 8-channel D-type Line Out
- 8-channel D-type AES/EBU In/Out *
- MAD1 (RlHs or optical SC), max. 64 channels of I/O *
- 16-channel ADAT In/Out (optical)
- 16-channel TEDIF In/Out (D-type) *
- 8 to 16-channel SDIF (SDI/HD/3G) In or OI on BNC sockets
- 8 or 16-channel Dolby® E/Digital In on BNC sockets
- CobraNet® 32-channel In/Out on RSH sockets
- Aviom A-Net® 16-channel Out on RSH sockets
- EtherSound® 64-channel In/Out on RSH sockets *
- double-width cards
Technical specifications

HP Mic / Line Input Module

<table>
<thead>
<tr>
<th>Conditions / Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>3.6 kΩ</td>
</tr>
<tr>
<td>Gain</td>
<td>–15 to +75 dB</td>
</tr>
<tr>
<td>Phantom Input Level</td>
<td>–12 dB, Source = 600 Ω</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>20 Hz to 20 kHz, 40 dB gain</td>
</tr>
<tr>
<td>THD + Noise</td>
<td>1 kHz, –7 dB</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>1 kHz, 100 dB</td>
</tr>
<tr>
<td>Input Delay</td>
<td>12 samples</td>
</tr>
<tr>
<td>Common Mode Rejection (CMRR)</td>
<td>80 dB</td>
</tr>
</tbody>
</table>

Line Output Module

<table>
<thead>
<tr>
<th>Conditions / Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Impedance</td>
<td>60 Ω</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>20 Hz to 20 kHz</td>
</tr>
<tr>
<td>THD + Noise</td>
<td>0.1%</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>1 kHz</td>
</tr>
<tr>
<td>Output Level</td>
<td>mono: -22 dB, stereo: -20 dB</td>
</tr>
<tr>
<td>Output Level</td>
<td>mono: –11 dB, stereo: –5 dB</td>
</tr>
<tr>
<td>IRSC Range</td>
<td>25-100 kHz</td>
</tr>
</tbody>
</table>

AES / EBU Input / Output Module

<table>
<thead>
<tr>
<th>Conditions / Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input/Output Impedance</td>
<td>110 Ω</td>
</tr>
<tr>
<td>Input Sensitivity</td>
<td>min. 0.5 V RMS</td>
</tr>
<tr>
<td>Output Level</td>
<td>480 mV</td>
</tr>
<tr>
<td>THD + Noise</td>
<td>0.1%</td>
</tr>
<tr>
<td>IRSC Range</td>
<td>25-100 kHz</td>
</tr>
</tbody>
</table>

Power Supply

<table>
<thead>
<tr>
<th>Conditions / Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Input Voltage Range</td>
<td>100 to 240 V AC ± 10%, 50 to 60 Hz</td>
</tr>
<tr>
<td>Power Consumption, Studer/Vista I</td>
<td>190 W typ., 250 W peak</td>
</tr>
<tr>
<td>Power Consumption, Studer/Vista II</td>
<td>220 V typ., 300 W peak</td>
</tr>
</tbody>
</table>

Ambient Conditions

<table>
<thead>
<tr>
<th>Conditions / Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>–5 to 45 °C, 17.5 to 113 °F</td>
</tr>
<tr>
<td>Humidity</td>
<td>non-condensing</td>
</tr>
</tbody>
</table>

Weights (approx.)

<table>
<thead>
<tr>
<th>Conditions / Details</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studer/Vista I</td>
<td>22-fader version: incl. GC screen: 52 kg / 115 lbs</td>
</tr>
</tbody>
</table>

DSP configurations

1. MONO

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Mono Input</th>
<th>Stereo Input</th>
<th>S. I. Input</th>
<th>Mono Group</th>
<th>Stereo Group</th>
<th>S. I. Group</th>
<th>Mono Master</th>
<th>Stereo Master</th>
<th>S. I. Master</th>
<th>Mono AUX</th>
<th>Stereo AUX</th>
<th>Control Group</th>
<th>Down-mix</th>
<th>N-X Bus</th>
<th>Vista/P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty</td>
<td>105</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>control group</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processing Blocks</td>
<td>ALL ALL ALL ALL</td>
<td>GEQ GEQ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. STEREO

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Mono Input</th>
<th>Stereo Input</th>
<th>S. I. Input</th>
<th>Mono Group</th>
<th>Stereo Group</th>
<th>S. I. Group</th>
<th>Mono Master</th>
<th>Stereo Master</th>
<th>S. I. Master</th>
<th>Mono AUX</th>
<th>Stereo AUX</th>
<th>Control Group</th>
<th>Down-mix</th>
<th>N-X Bus</th>
<th>Vista/P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty</td>
<td>60</td>
<td>24</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ALL</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processing Blocks</td>
<td>ALL ALL ALL ALL ALL</td>
<td>DYN DYN EQ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. SURROUND

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Mono Input</th>
<th>Stereo Input</th>
<th>S. I. Input</th>
<th>Mono Group</th>
<th>Stereo Group</th>
<th>S. I. Group</th>
<th>Mono Master</th>
<th>Stereo Master</th>
<th>S. I. Master</th>
<th>Mono AUX</th>
<th>Stereo AUX</th>
<th>Control Group</th>
<th>Down-mix</th>
<th>N-X Bus</th>
<th>Vista/P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty</td>
<td>32</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ALL</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processing Blocks</td>
<td>ALL ALL ALL ALL ALL ALL</td>
<td>ALL DYN DYN ALL EQ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. FOH

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Mono Input</th>
<th>Stereo Input</th>
<th>S. I. Input</th>
<th>Mono Group</th>
<th>Stereo Group</th>
<th>S. I. Group</th>
<th>Mono Master</th>
<th>Stereo Master</th>
<th>S. I. Master</th>
<th>Mono AUX</th>
<th>Stereo AUX</th>
<th>Control Group</th>
<th>Down-mix</th>
<th>N-X Bus</th>
<th>Vista/P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty</td>
<td>145</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ALL</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processing Blocks</td>
<td>EQ DEL EQ DEL</td>
<td>EQ DEL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. MONITOR

<table>
<thead>
<tr>
<th>Path Type</th>
<th>Mono Input</th>
<th>Stereo Input</th>
<th>S. I. Input</th>
<th>Mono Group</th>
<th>Stereo Group</th>
<th>S. I. Group</th>
<th>Mono Master</th>
<th>Stereo Master</th>
<th>S. I. Master</th>
<th>Mono AUX</th>
<th>Stereo AUX</th>
<th>Control Group</th>
<th>Down-mix</th>
<th>N-X Bus</th>
<th>Vista/P8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty</td>
<td>85</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>ALL</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Processing Blocks</td>
<td>ALL ALL ALL ALL</td>
<td>ALL N-S ALL EQ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monitoring and TB I/O

The requirements for monitoring and talkback inputs/outputs are different, depending on which configuration is used. Therefore these inputs and outputs are automatically allocated to the maris panel connectors in a reasonable way when selecting a configuration.
Dimensions

Optional freestand dimensions

Frame sizes