UNPACKING AND INSPECTION

After unpacking the PCM 81, save all packing materials in case you ever need to ship the unit. Thoroughly inspect the PCM 81 and packing materials for signs of damage. Report any shipment damage to the carrier at once; report equipment malfunction to your dealer.

PRECAUTIONS

Save these instructions for later use.

Follow all instructions and warnings marked on the unit.

Always use with the correct line voltage. Refer to the manufacturer's operating instructions for power requirements. Be advised that different operating voltages may require the use of a different line cord and/or attachment plug.

Do not install the unit in an unventilated rack, or directly above heat producing equipment such as power amplifiers. Observe the maximum ambient operating temperature listed in the product specification.

Slots and openings on the case are provided for ventilation; to ensure reliable operation and prevent it from overheating, these openings must not be blocked or covered. Never push objects of any kind through any of the ventilation slots. Never spill a liquid of any kind on the unit.

This product is equipped with a 3-wire grounding type plug. This is a safety feature and should not be defeated.

Never attach audio power amplifier outputs directly to any of the unit's connectors.

To prevent shock or fire hazard, do not expose the unit to rain or moisture, or operate it where it will be exposed to water.

Do not attempt to operate the unit if it has been dropped, damaged, exposed to liquids, or if it exhibits a distinct change in performance indicating the need for service.

This unit should only be opened by qualified service personnel. Removing covers will expose you to hazardous voltages.
NOTICE

This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer’s instructions, may cause interference to radio and television reception. It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Part 15 of FCC Rules, which are designated to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment OFF and ON, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the computer with respect to the receiver
- Move the computer away from the receiver
- Plug the computer into a different outlet so that the computer and receiver are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful:

"How to identify and Resolve Radio/TV Interference Problems."

This booklet is available from the U.S. Government Printing Office, Washington, DC 20402, Stock No. 004-000-00345-4.

Le présent appareil n’émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la classe B prescrites dans le Règlement sur le brouillage radioélectrique édicté par le ministère des Communications du Canada.
Introduction

DK Vigtig information om sikkerhed ..iv
FI Tärkeitä turvallisuusohjeita..iv
NO Viktig informasjon om sikkerhet ...v
SE Viktiga säkerhetsföreskrifter ..v
DE Wichtige Sicherheitsanweisungen..vi
ES Instrucciones importantes de seguridadvi
FR Instructions de Sécurité Importantesvii
IT Importanti norme di sicurezza..vii

Section 1: Getting Started

About the PCM 81 ...1-2
 - The Presets
 - The Algorithms
 - Tempo Control
 - Editing
 - Memory Cards
 - User Interface

Front Panel Overview ..1-4

Rear Panel Overview ..1-6

Block Diagram ..1-8

Installation Notes ..1-9
 - Mounting
 - Power Requirements
 - Audio Connections
 - Control Connections
 - Connectors
 - Setting Audio Levels
 - Configurations
 - Memory Cards

Section 2: Basic Operation

Modes of Operation ...2-2
 - Navigating a Matrix
 - Go or Pro
 - Info

Control Mode ...2-5
 - Row 0 Audio
 - Row 1 System
 - Row 2 Card
 - Row 3 MIDI
 - Row 4 Setup
 - Row 5 Mapx
 - Row 6 Chain

Section 2: Basic Operation (continued)

Program and Register Banks ...2-17
 - Selecting Effects

Tempo Mode ...2-19
 - The Tempo Mode Matrix
 - Row 0 Tempo
 - Row 1 Tap

Editing an Effect ..2-21
 - The Soft Knob
 - The Soft Row
 - Compare
 - Bypass
 - Store
 - Operations
 - The Full Edit Matrix
 - Patching

Section 3: Algorithms and Parameters

About the Algorithms ...3-2

The 4-Voice Algorithms ..3-2
 - Concert Hall
 - Plate
 - Chamber
 - Inverse
 - Infinite

The 6-Voice Algorithms ..3-9
 - Glide>Hall
 - Chorus+Rvb
 - M-Band+Rvb

The Resonant Chord Algorithms3-13
 - Res1>Plate and Res2>Plate

The Parameters ...3-15
 - Chorus
 - Controls
 - Delay Time
 - Feedback/Cross Feedback
 - Filters
 - Glide FX
 - Levels
 - Modulation
 - Panning
 - Patching
 - Pitch
 - Resonance
 - Rvb Design
 - Rvb Time

The Pitch Algorithms ..3-33
 - About the Pitch Algorithms
 - About Pitch Shifting
 - Quad>
 - Hall
 - Dual-Chamb
 - Dual-Plt
 - Dual-Inv
 - Stereo-Chmb
 - VSO-Chmb
 - The Pitch Parameters

Using the Submixer ...3-45
 - Sends
 - Returns
 - Routing
 - Useful Configurations

Rvb and FX Block Controls ..3-52

The Pitch Correct Algorithm3-54
 - The Pitch Correct Parameters
Section 4: Presets
Overview ... 4-2
Program Bank 0 (P0) ... 4-3
 Multi Effects • Modulation Effects • Special Effects
Program Bank 1 (P1) ... 4-8
 Rhythmic Echo and Delay Effects • Ambience Effects
Program Bank 2 (P2) ... 4-13
 EQ Effects • Spatial Effects • Gain Effects • Resonant Chord Effects
Program Bank 3 (P3) ... 4-19
 Reverb Effects • Processed Reverb Effects • Remix Effects
Program Bank 4 (P4) ... 4-24
 Vocal Shift • Vocal Harmony • Guitar Magic • Instrument Shift & Harmony • Percussion & Tempo
Program Bank 5 (P5) ... 4-29
 Sci-Fi FX • Pitch & Delay • Pitch Sequences • Pads & Drones • Utility Programs • Pitch Correct
Alphabetical Index of Presets 4-34

Section 5: MIDI Operation
Selecting a MIDI Channel ... 5-2
Accessing Programs and Registers 5-2
Controlling Tempo Rate with MIDI Clock 5-3
 MIDI Tempo Control • Using the PCM 81 as a MIDI Clock Source • Slaving Two or More PCM 81s
Controller Quirks .. 5-4
The ADJUST Knob, Foot Pedal, Foot SW1, and Foot SW 2 as MIDI Controllers ... 5-4
 Controlling the Soft Knob with MIDI • Controlling the Soft Knob with a Foot Pedal
Program Change Messages 5-5

Section 5: MIDI Operation (continued)
Automation .. 5-6
 SysEx Automation • Controller Automation • Reset All Controllers • MIDI Clock and Clock Commands • PCM 90 Compatibility • Dynamic MIDI
Bulk Data Dumps .. 5-8
MIDI Implementation Chart .. 5-8

Section 6: Troubleshooting
Low Voltage .. 6-2
Overheating ... 6-2
Common MIDI Problems .. 6-2
Operational Problems .. 6-3
 No Input • No Digital Audio Output • No Effects Output
Power On Behavior .. 6-3
Restoring Factory Default Settings 6-3
Reinitialization ... 6-4

Appendix
Specifications .. A-2
Declaration of Conformity .. A-4
VIGTIG INFORMATION OM SIKKERHED

Gem denne vejledning til senere brug.
Følg alle anvisninger og advarsler på apparatet.

Apparatet må ikke monteres i et kabinet uden ventilation eller lige over andet udstyr, der udvikler varme, f.eks. forstærkere. Den maksimale omgivelsetemperatur ved drift, der står opført i specifikationerne, skal overholdes.

Der er ventilationsåbninger i kabinettet. For at sikre apparatets drift og hindre overophedning må disse åbninger ikke blokeres eller tildækkes. Stik aldrig noget ind igennem ventilationsåbningerne, og pas på aldrig at spilde nogen form for væske på apparatet.

Dette apparat er forsynet med et stik med jordforbindelse. Denne sikkerhedsforanstaltning må aldrig omgås.

Udgangsstik fra audioforstærkerer må aldrig sættes direkte i apparatet. Efterhånden på apparatet må aldrig udsættes for regn eller fugt og må ikke bruges i nærheden af vand for at undgå risiko for elektrisk stød og brand.

Apparatet må aldrig bruges, hvis det er blevet stødt, beskadiget eller vådt, eller hvis ændringer i ydelsen tyder på, at det trænger til eftersyn.

Dette apparat må kun åbnes af fagfolk. Hvis dækslet tages af, udsættes man for livsfarende højspænding.

Denne mærkat på komponenten advarer om uisoleret, farlig spænding i apparatet ... høj nok til at give elektrisk stød.

Denne mærkat på komponenten advarer om vigtig drifts- og vedligeholdsinformation i den tilhørende litteratur.

TÄRKEITÄ TURVALLISUUSOHJEITA

Säilytä nämä ohjeet tulevaa käyttöä varten.
Seuraa kaikia yksikköön merkittyjä ohjeita ja varoituksia.

Älä asenna yksikköä telineeseen jossa ei ole tuuletusta tai välittömästi lämpöä tuottavien laitteiden, esim. tehoaavistimien, yläpuolelle. Ympäristön lämpötila käytössä ei saa ylittää tuotemerkkien tai -laatukirjoituksen määrityksiä.

Tuote on varustettu 3-johtimisella maadoitetulla verkkopistokkeella. Ei saa poistaa.

Älä kytke audiotehoaavistimen lähtöjä suoraan mihinkään yksikön liittimeen.

Sähköiskun ja palovaaran välttämiseksi yksikkö ei saa olla sateessa tai kosteassa, eikä sitä saa käyttää määrässä ympäristössä.

Älä käytä yksikköä jos se on pudonnut, vaurioitunut, kostunut, tai jos sen suorituskyky on huomattavasti muuttunut, mikä vaatii huoltoa.

Yksikön saa avata vain laitteeseen perehtynyt huoltohenkilö. Kanssien poisto altistaa sinut vaarallisille jänniteille.

Tämä kolmio, joka esiintyy komponentissasi, varoittaa sinua eristämättömän vaarallisen jännitteen esiintymisestä yksikön sisällä.

Tämä jännite saattaa olla niittävän korkea aiheuttamaan sähköiskuvaaran.

Tämä kolmio, joka esiintyy komponentissasi, kertoo sinulle, että tässä tuotedokumentoinnissa esiintyy tärkeitä käyttö- ja ylläpito-ohjeita.
NORSK

VIKTIG INFORMASJON OM SIKKERHET

Ta vare på denne veiledningen for senere bruk.
Følg alle anvisningene og advarslene som er angitt på apparatet.
Apparatet skal ikke monteres i skap uten ventilasjon, eller direkte over varme produserende utstyr, som for eksempel kraftforstere. Den maksimale romtemperaturen som står oppgitt i produktbeskrivelsen, skal overholdes.
Apparatet er utstyrt med ventilasjonsåpninger. For at apparatet skal være pålitelig i bruk og ikke overopphet, må disse åpningene ikke blokkeres eller tildekkes. Stikk aldri noe inn i ventilasjonsåpningene, og pass på at det aldri sèles noen form for væske på apparatet.
Dette apparatet er utstyrt med et jordet støpsel. Dette er en sikkerhetsforanstaltning som ikke må forandres.
Apparatet er utstyrt med ventilasjonsåpninger. For at apparatet skal være pålitelig i bruk og ikke overopphet, må disse åpningene ikke blokkeres eller tildekkes.
Dette apparatet er utstyrt med ventilasjonsåpninger. For at apparatet skal være pålitelig i bruk og ikke overopphet, må disse åpningene ikke blokkeres eller tildekkes.
Dette apparatet skal kun åpnes av fagfolk. Hvis dekselet fjernes, utsettes man for livsfare høyspenning.
Komponenten er merket med denne trekanten, som er en advarsel om at det finnes uisولert, farlig spenning inne i kabinettet ... høy nok til å utgjøre en fare for elektrisk støt.
Komponenten er merket med denne trekanten, som betyr at den tilhørende litteraturen inneholder viktige opplysninger om drift og vedlikehold.

SE

SVENSKA

VIKTIGA SÄKERHETSFÖRESKRIFTER

Spara dessa föreskrifter för framtida bruk.
Följ alla anvisningar och varningar som anges på enheten.
Apparatet ska inte installeras i ett oventilerat skåp, eller direkt ovanför varmeproducenterande utrustning, som till exempel kraftforstärkare. Den maximala rumstemperaturen som står upp som i produktbeskrivelsen, ska överhindras.
Apparatet är utrustat med ventilationsöppningar. För att garantera att apparatet ska vara pålitligt i bruk och inte överhettas, får dessa öppningar inte blockeras eller täckas. Innan spänder ska aldrig demas någon form av vätska på apparatet.
Installera inte enheten i ett oventilerat stativ, eller direkt ovanför utrustningar som avgöra värme, t ex effektförstärkare. Se till att omgivningens temperatur vid drift inte överskrider det angivna värdet i produktspecifikationen.
Behållaren är försett med hål och öppningar för ventilation. För att garantera tillförlitlig funktion och förhindra överhettning får dessa öppningar inte blockeras eller täckas. Inga föremål får skuffas in genom ventilationsöppningarna. Inga vätskor får spillas på enheten.
Produkten är försett med en jordad 3-trådskontakt. Detta är en säkerhetsfunktion som inte får tas ur bruk.
Anslut aldrig audioeffektförstärkaruttaget direkt till någon av enhetens kontaktöverföringar.
För att undvika elstöt eller brandfara får enheten inte utsättas för regn eller fukt, eller användas på platser där den blir våt.
Produkten är försett med en jordad 3-trådskontakt. Detta är en säkerhetsfunktion som inte får tas ur bruk.
Enheten får åpnas endast av behörig servicepersonal. Farliga spänningar blir tillgängliga när locken tas bort.
Denna triangel, som visas på din komponent, varnar dig om en sisolerad farlig spänning inne i enheten. Denna spänning är eventuellt så hög att vara fara för elstöt föreligger.
Denna triangel, som visas på din komponent, anger att viktiga bruksanvisningar och serviceanvisningar ingår i dokumentationen i fråga.
DEUTSCH

WICHTIGE SICHERHEITSANWEISUNGEN

Heben Sie sich diese Sicherheitsanweisungen auch für später auf.

Befolgen Sie alle auf der Vorrichtung stehenden Anweisungen und Warnungen.

Immer nur mit der richtigen Spannung verwenden! Die eebrauchsanweisungen des Herstellers informieren Sie über die elektrischen Anforderungen. Vergessen Sie nicht daß bei verschiedenen Betriebsspannungen ggf. auch verschiedene Leitungskabel und/oder Verbindungsstecker zu verwenden sind.

Stellen Sie die Vorrichtung nicht in ein unbelüftetes Gestell oder unmittelbar über wärmeerzeugende Geräte wie z.B. Tonverstärker. Halten Sie die in den Produktspezifikationen angegebene maximale Umgebungstemperatur bei Betrieb ein.

Schlitze und Öffnungen im Gehäuse dienen der Belüftung; um verlässlichen Betrieb sicherzustellen und Überheizen zu vermeiden dürfen diese Öffnungen nich verstopft oder abgedeckt werden. Stecken Sie nie irgend einen Gegenstand durch die Belüftungsschlitze. Vergießen Sie keine Flüssigkeiten auf den Apparat.

Dieses Produkt ist mit einem 3-drahtigen Erdungsstecker ausgerüstet. Diese Sicherheitsmaßnahme darf nicht unwirksam gemacht werden.

Schließen Sie nie Tonverstärker unmittelbar an einen Anschluß des Apparates an. Um elektrischen Schlag oder Feuer zu vermeiden, setzen Sie den Apparat weder Regen noch Feuchtigkeit aus und betreiben Sie ihn nicht dort wo Wasser eindringen könnte.

Versuchen Sie nicht den Apparat zu betreiben falls er fallen gelassen, beschädigt, oder Flüssigkeiten ausgesetzt wurde, oder falls sich seine Arbeitsweise derart ändert daß daraus ein Bedarf nach Reparatur zu schließen ist.

Dieser Apparat sollte nur von qualifizierten Fachleuten geöffnet werden. Das Abnehmen von Abdeckungen setzt Sie gefährlichen Spannungen aus.

ESPAÑOL

INSTRUCCIONES IMPORTANTES DE SEGURIDAD

Guarde esta instrucciones para uso posterior.

Utilice siempre el voltaje correcto. Diríjase a las instrucciones de operación del fabricante para obtener las especificaciones de potencia. Esté al tanto de que voltajes de operación distintos requieren el uso de cables y/o enchufes distintos.

No instale esta unidad en un estante sin ventilación, ni tampoco directamente encima de equipos que generen calor tales como amplificadores de potencia. Fíjese en las temperaturas ambientales máximas de operación que se mencionan en las especificaciones del producto.

Las aperturas y ranuras del chasis sirven para proveer la ventilación necesaria para operar la unidad con seguridad y para prevenir sobrecalentamiento, y por lo tanto no pueden ser obstruidas o cubiertas. No introduzca objetos de ningún tipo a través de las ranuras de ventilación, y nunca deje caer ningún líquido sobre la unidad.

Este producto está equipado con un enchufe de 3 clavijas con conexión a tierra. Éste es un elemento de seguridad que no debe ser eliminado.

Nunca conecte ningún tipo de salida de amplificadores de sonido directamente a los conectores de la unidad.

Para prevenir descargas eléctricas o incendios, mantenga la unidad alejada de la lluvia, humedad o cualquier lugar en el que pueda entrar en contacto con agua.

No trate de hacer funcionar la unidad si se ha caído, está dañada, ha entrado en contacto con líquidos, o si nota cualquier cambio brusco en su funcionamiento que indique la necesidad de hacerle un servicio de mantenimiento.

Esta unidad deberá ser abierta únicamente por personal calificado. Si usted quita las coberturas se expondrá a voltajes peligrosos.

Dieses Dreieck auf Ihrem Apparat warnt Sie vor nicht-isolierter, gefährlicher Spannung im Gehäuse ... stark genug um eine Berührungsgefahr darzustellen.

Dieses Dreieck auf Ihrem Apparat bedeutet daß wichtige Betriebs- und Wartungsanweisungen in der mitgelieferten Dokumentation zu finden sind.

Este triángulo que aparece en su componente le advierte sobre la existencia dentro del chasis de voltajes peligrosos sin aislantes ... voltajes que son lo suficientemente grandes como para causar electrocución.

Este triángulo que aparece en su componente lo alerta sobre las instrucciones de operación y mantenimiento importantes que están en los materiales de lectura que se incluyen.
FRANÇAIS

INSTRUCTIONS DE SÛRETÉ IMPORTANTES

Gardez ces instructions pour référence future.
Observez toutes les instructions et tous les avertissements marqués sur l’appareil.
Branchez uniquement sur un réseau de tension indiquée. Consultez le manuel d'instruction du fabricant pour les spécifications de courant. N’oubliez pas que différentes tensions peuvent nécessiter l’utilisation de câbles et/ou de fiches de connexion différents.
N’installez pas l’appareil en un compartiment non-aéré ou directement au-dessus d’équipements générateurs de chaleur, tels qu’amplificateurs de courants, etc.
Ne dépassez pas la température ambiante maximale de fonctionnement indiquée dans les spécifications du produit.
Des fentes et ouvertures sont prévues dans le boîtier pour l’aération; Pour assurer le bon fonctionnement et pour prévenir l’échauffement, ces ouvertures ne doivent pas être couvertes ou bloquées. N’insérez pas d’objets dans les fentes d’aération.
Empêchez tout liquide de se répandre sur l’appareil.
N’essayez pas de faire fonctionner l’appareil s’il est tombé à terre, s’il a été endommagé, exposé à un liquide ou si vous observez des différences nettes dans son fonctionnement, indiquant la nécessité de réparations.
Cet appareil ne doit être ouvert que par un personnel de service qualifié. En enlevant les couvercles vous vous exposez à des tensions électriques dangereuses.

Ce triangle, sur votre appareil vous avertit de la présence de tension dangereuse, non-isolée à l’intérieur du boîtier... une tension suffisante pour représenter un danger d’électrocution.

Ce triangle sur sur votre appareil vous invite de suivre d’importantes instructions d’utilisation et d’entretien dans la documentation livrée avec le produit.

ITALIANO

IMPORTANTI NORME DI SICUREZZA

Conservare le presenti norme per l’utilizzo futuro.
Osservare tutte le istruzioni e le avvertenze apposte sull’unità.
Utilizzare esclusivamente con la tensione di rete corretta. Consultare le istruzioni operative fornite dal fabbricante per i dati riguardanti la tensione e l’assorbimento di corrente. Potrebbe essere necessario l’uso di cavi di rete e/o di spine diverse a seconda della tensione utilizzata.
Non installare l’unità in uno scaffale privo di ventilazione oppure direttamente sopra una fonte di calore, come, ad esempio, un amplificatore. Non superare la temperatura ambientale massima di funzionamento riportata nei dati tecnici del prodotto.
Le fessure e le altre aperture nella scatola servono alla ventilazione. Per un funzionamento affidabile, e per evitare un eventuale surriscaldamento, queste aperture non vanno ostruite o coperte in nessun modo. Evitare in tutti i casi di inserire oggetti di qualsiasi genere attraverso le fessure di ventilazione. Non versare mai del liquido di nessun tipo sull’unità.
Questo prodotto viene fornito con una spina a 3 fili. Tale dispositivo di sicurezza non va eliminato.
Evitare sempre di collegare le uscite dell’amplificatore audio direttamente ai connettori dell’unità.
Per prevenire il pericolo di folgorazione e di incendio non esporre l’unità alla pioggia o ad un’umidità eccessiva; evitare di adoperare l’unità dove potrebbe entrare in contatto con acqua.
Evitare di adoperare l’unità se la stessa è stata urtata violentemente, se ha subito un danno, se è stata esposta ad un liquido o in caso di un evidente cambiamento delle prestazioni che indichi la necessità di un intervento di assistenza tecnica.
Ogni intervento sull’unità va eseguito esclusivamente da personale qualificato. La rimozione della copertura comporta l’esposizione al pericolo di folgorazione.

Il presente triangolo impresso sul componente avverte della presenza di tensioni pericolose non isolate all’interno della copertura... tali tensioni rappresentano un pericolo di folgorazione.

Il presente triangolo impresso sul componente avverte l’utenza della presenza nella documentazione allegata di importanti istruzioni relative al funzionamento ed alla manutenzione.
Getting Started

About the PCM 81
The Presets • The Algorithms • Tempo Control • Editing • Memory Cards • User Interface

Front Panel Overview

Rear Panel Overview

Block Diagram

Installation Notes
Mounting • Power Requirements • Audio Connections • Control Connections • Connectors • Setting Audio Levels • Configurations • Memory Cards
ABOUT THE PCM 81

Thank you for your purchase of the PCM 81, one of Lexicon’s most powerful and versatile digital effects processors. The PCM 81 brings you exciting new effects with extensive processing and control capabilities, and uncompromising sonic clarity.

THE PRESETS

The PCM 81 contains a built-in library of 300 preset programs that provide a comprehensive array of effects ranging from beautiful and lush to completely wild. The presets are organized into 6 Banks of 50, and functionally grouped for a wide range of applications. Be sure to experiment with all 300 presets to get a feel for the full range of PCM 81 capabilities.

When you turn the knob, you will adjust the reverb decay. In Prime Blue, ADJUST is patched to several parameters, so that turning the knob changes the effect from a tight chorus, to a chorus with recirculating echoes and, finally, into a reverb.

THE ALGORITHMS

The PCM 81 uses 17 stereo algorithms to create different types of effects. Each algorithm includes an uncompromised stereo reverb effect, as well as several voices of additional stereo effects. There are three general classes of algorithm: 4-Voice, 6-Voice and Pitch. The 4-Voice algorithms: Concert Hall, Plate, Chamber, Inverse and Infinite each combine a specific type of reverberation with a 4-voice, general purpose, stereo effect “toolbox”, as well as additional post-processing for the reverb. The 6-Voice algorithms: Glide> Hall, Chorus>Rvb, M-Band>Rvb, Res1>Plate and Res2>Plate each combine a specific type of reverberation with a specialized 6-voice stereo effect. The Pitch algorithms: Quad>Hall, Dual-Chmb, Dual Pht, Dual Inv, Stereo-Chmb, Vso-Chmb and Pitch Correct each offer a unique type of pitch shifting, combined with an uncompromised Lexicon reverb.

Many of the PCM 81 algorithms include parameters that make it possible to create dynamic spatialization effects for 2-channel or surround applications. Check out the Ambience Effects in Bank P1 and the Spatial Effects in Bank P2 for examples. The Dual FX Pitch algorithms have dedicated Submixer controls that allow instant reconfiguration of the reverb and effects blocks.

TEMPO CONTROL

The PCM 81 gives you a unique set of tempo controls. Tempos can be tapped in with the front panel Tap button (or an assigned controller) or “dialed-in”, in BPM (beats per minute) on the display. The PCM 81 also lets you generate MIDI clock from your tempo, as
well as receive MIDI tempo from an external sequencer or drum machine. In the PCM 81, tempo can control LFO speeds and Time Switch controls, as well as all delay parameters, ensuring that all of your modulations are in tempo with your music. You can even set independent rhythmic values for different parameters within a single program.

Tempo can be set and displayed in either rhythmic value or time values. Many presets, particularly the Rhythmic Echo & Delay Effects in Program Bank P1, have delay times assigned to Tap tempo. Try loading some of these and pressing Tap twice in rhythm to change tempo.

EDITING

An enormous range of editing control is provided for each algorithm, with parameters organized in an edit matrix of as many as 100 main controls. In addition to providing this powerful sound design capability, the PCM 81 also allows you to customize these controls for your day-to-day editing needs, or to use a subset of controls specially designed for each preset.

The PCM 81 has two levels of Edit Mode control called Go mode and Pro mode. In Go mode, the most useful parameters within an effect are grouped for instant access via the front panel Edit button. Each preset has a specially selected set of Go mode parameters which let you make value changes to the effect without losing the character of the sound. Pro mode gives you access to the full parameter editing matrix for the algorithm of any loaded effect when you press Edit. In this mode, you can access a complete set of Modulation and Patching parameters, create your own ADJUST knob patch and assign your own Go mode parameters.

A unique Patching and Modulation system provides unprecedented control over your effects, with a versatile set of internal modulators: LFO, AR Envelope, Envelope Follower, Latch and Time Switches. These allow you to create modulation sweeps which move in time with music, or wildly animated effects. You can create as many as 10 patches per effect, each with as many as 8 pivot points. You can patch multiple parameters to a single controller, or patch multiple sources to a single destination.

MEMORY CARDS

The front panel memory slot will accept industry standard PCMCIA SRAM cards (up to 1Meg). Use these cards to store effects (as many as 2350 on a 1 Meg card), system setups, MIDI program maps, and more.

PCM 81 and PCM 80 SRAM cards are readable by either system.

USER INTERFACE

For all of its programming power and flexibility, you’ll find the PCM 81 simple to use. The large, 2-line fluorescent display is easy to see from any angle whether the surroundings are bright or dark. Separate SELECT and ADJUST knobs make program loading and editing quick and easy. We’ve even designed in a special Info mode — press and hold any button to find out what its function is, or to get status information such as the name of the running effect, current tempo rate, etc.

To get the most out of the PCM 81, we suggest that you invest the time to explore this manual. We think you’ll agree that the time spent investigating will reward you with enjoyment of its full capabilities.
FRONT PANEL OVERVIEW

1. **Headroom**
 Five-position indicator for analog and digital signal levels and overload conditions.

2. **INPUT**
 Adjusts analog input level.

3. **Display**
 Two rows of 20 alphanumeric characters display effect names and ID numbers, and parameter names and values.

4. **ADJUST**
 In Edit mode, changes values of parameters chosen with SELECT. With Program Banks or Register Banks selected, behaves as a soft knob for patched parameters.

5. **SELECT**
 Scrolls through presets, registers or parameters. With Program Bank or Register Bank selected, scrolls through the 50 programs in the selected bank. With Edit selected, scrolls only through the parameters of the active row.

6. **Up/Down**
 Press to move up and down through a program, register, or parameter matrix.

7. **Program Banks**
 Enables selection of factory presets. Press repeatedly to cycle selection of 4 internal preset banks. Press and hold to display the name of the current bank.

8. **Load/***
 In Program or Register mode, loads the selected program. In Edit mode, scrolls through any multi-field parameter.
9. **Register Banks**
 Enables selection of user memory. If a RAM card is loaded into the Memory Card slot, each press of this button selects a new register bank. Press and hold to display the name of the current bank.

10. **Store**
 Initiates register store function.

11. **Edit**
 Enables parameter selection for editing of values.

12. **Compare**
 Active in Program, Register, and Edit modes. Press to compare the active version of the current effect with the most recently stored version.

13. **Control**
 Enables selection of system and global parameters.

14. **Bypass**
 Bypasses or mutes audio, depending on the setting of each program's bypass parameter.

15. **Tempo**
 Press to display tempo rate and to initiate tempo functions. LED flashes in time with current tempo rate.

16. **Tap**
 Sets tempo. Press twice in rhythm to establish tempo rate. Press once to reset LFO.

17. **Memory Card**
 Slot for optional preset ROM or register RAM cards. Press Eject button to remove card.

18. **POWER**
 On/Off.
1. **AC Power**
 Standard 3-pin IEC power connector. 100-240V, 50-60Hz automatic switching to correct voltage range.

2. **MIDI IN**
 Receives MIDI information from other MIDI equipment such as master keyboard controllers, MIDI foot controllers, sequencers and synthesizers.

 MIDI THRU
 Passes any MIDI data received without change.

 MIDI OUT
 Transmits MIDI data to other equipment.

3. **AES/EBU and S/PDIF Inputs**
 AES/EBU format digital connectors conform to AES professional standards. S/PDIF format digital connectors conform to CP-340 Type II and IEC-958 consumer standards. Only one of these options (AES or S/PDIF) may be selected for input.

4. **FOOTSWITCH**
 A 1/4” Tip/Ring/Sleeve phone jack for two independent momentary footswitches.

5. **FOOT CONTROLLER**
 A 1/4” Tip/Ring/Sleeve phone jack provided for footpedal with 10kΩ to 100Ω impedance.
6. BALANCED OUTPUTS
 Output impedance is 125Ω, each side, balanced, and levels up to +18dBu maximum full scale. 1/4" phone connectors and XLRs provided. Both S/PDIF and AES outputs are active at all times.

7. BALANCED INPUTS
 Combined 3 pole XLR and 1/4" jacks, electronically balanced. Input impedance is 50kΩ unbalanced, and 100kΩ balanced. Inputs accept input levels from -22dBu to +20dBu.

8. INPUT LEVEL
 Two-position (In/Out) switch for matching input gain to the source being used. In position adds 20dB of input gain (unbalanced) to the input stages. Out position provides 0dB of gain (balanced).
INSTALLATION NOTES

MOUNTING
The PCM 81 uses one EIA-standard rack space, and can be mounted on any level surface or in a standard 19 inch (483 mm) rack. If the PCM 81 is mounted in a rack or road case, support the rear of the chassis to prevent possible damage from mechanical shock and vibration.

The maximum ambient operating temperature is 104°F (40°C). Provide adequate ventilation if the PCM 81 is mounted in a closed rack with heat-producing equipment such as power amplifiers.

POWER REQUIREMENTS
The PCM 81 is equipped with a 3-pin IEC power connector and detachable cord.

The PCM 81 will operate with power sources from 100 to 240 volts AC, 50-60Hz. Power switching to actual line voltage is automatic.

AUDIO CONNECTIONS

Analog Audio
For best performance, maintain balanced connections, and use high-quality, low-capacitance, twisted-shielded pair cable.

When connecting to single-ended, unbalanced devices, connect the low side to signal ground at the unbalanced piece of equipment. Output level does not change when connected to an unbalanced input.

Mono Applications
Use a Y-connector inserted at the analog inputs and outputs to have the signal summed to mono.

Note:
Be careful to keep input and output to all channels wired consistently. Out-of-phase wiring can produce audible effects.

Digital Audio
S/PDIF (CP-340 Type II) Consumer Digital Audio connections require 75Ω coaxial cable suited for digital audio or video signals. Audio grade cable is not suitable.

AES/EBU connections require balanced connections using high-quality, low-capacitance, controlled-impedance, data communication, twisted-shielded pair cable. Microphone cable may introduce a significant amount of jitter into the signal, causing distortion.

CONTROL CONNECTIONS

Footswitch/Foot Controller
One 1/4 inch T/R/S phone jack is provided for 2 momentary footswitches. Another 1/4 inch T/R/S phone jack is provided for a footpedal (minimum 100Ω to maximum 10k impedance).

Normally open or normally closed momentary switches are suitable. At power on, the PCM 81 assumes the switch is off. Use shielded, twisted-pair cable with shield connected to sleeve. See diagram on page 1-9.
MIDI

Five-pin DIN connectors are provided for MIDI IN, THRU and OUT. Use standard 5-pin DIN MIDI cable assemblies, available from your local dealer.

CONNECTORS

<table>
<thead>
<tr>
<th>Signal</th>
<th>Mating Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L and R Analog Audio Input</td>
<td>XLR A3M</td>
<td>Active balanced, pin 2 high +2dBu min; +20dBu max at 0dB setting</td>
</tr>
<tr>
<td>L and R Analog Audio Output</td>
<td>XLR A3F</td>
<td>Active balanced, pin 2 high -2dBu to +18dBu at full scale output</td>
</tr>
<tr>
<td>AES/EBU Digital Input</td>
<td>XLR A3M</td>
<td>Balanced RS-422 pin 2 high</td>
</tr>
<tr>
<td>AES/EBU Digital Output</td>
<td>XLR A3F</td>
<td>Balanced RS-422 pin 2 high</td>
</tr>
<tr>
<td>S/PDIF CP-340 Type II Audio Input and Output</td>
<td>1/4"</td>
<td>EIAJ Consumer Digital Audio Format tip high</td>
</tr>
<tr>
<td>MIDI In</td>
<td>5-pin DIN</td>
<td>Standard MIDI Interface</td>
</tr>
<tr>
<td>MIDI Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDI Thru</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pin 2 high by convention

SETTING AUDIO LEVELS

The PCM 81, with both analog and digital input and output connections, requires some attention to proper setting of signal level.

Analog inputs are first gain-conditioned by the rear panel input gain switch, and then by the front panel INPUT knob. Proper setting of both the switch and knob are important for best performance of the A/D converter. Audio data from the A/D converter is level adjusted by the Analog Lvl parameter before reaching the effects processors. Digital inputs are also level adjusted before reaching the effects processors via the Digital Lvl parameter.

Analog and the selected digital source are mixed at the input to the effects processors. For example, setting both Analog Lvl and Digital Lvl to 50% will mix the analog and the selected digital input signals equally and send them to the effects. Creating a mix which exceeds 100% can cause overload.
Proper setting of Input level on the PCM 81 is dependent on:

- Proper signal level into the analog front end to avoid signals causing overload at the DSP input
- Proper adjustment of the signal level into the analog-to-digital converter to optimize noise and avoid overload
- Proper setting of signal level into the digital signal processor to optimize noise.

Headroom Display

The headroom display provides both headroom and overload information from a variety of measurement points. The meters display the sum of both the analog and the digital input data. Examining either the analog or the digital level alone requires that the Level parameter of the subject data stream be set to 100%, while the Level parameter of the other is set to 0%.

The chart below illustrates the adjustment range that will set input levels for both balanced and unbalanced operation. When a choice can be made, it is best to operate at the higher amplitude end of the recommended range to optimize noise performance.

<table>
<thead>
<tr>
<th></th>
<th>Unbalanced</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>overload:</td>
<td>>0dBu</td>
<td>>+20dBu</td>
</tr>
<tr>
<td>acceptable:</td>
<td>0dBu to -22dBu</td>
<td>+20dBu to -2dBu</td>
</tr>
<tr>
<td>too low (noisy):</td>
<td><-22dBu</td>
<td><-2dBu</td>
</tr>
</tbody>
</table>

Overload

The 0db (overload) indicators will light under the following conditions:

- A/D overload
- Overload at any point in effects processing

For example, internal peaking of high Q filters, or level buildup from certain reverberation modes can result in overload, even when the input A/D or digital receiver data stream is not at full scale. Such conditions are most often caused by a combination of extreme parameter settings. Adjusting parameter/level settings can eliminate these overload conditions.

Selecting a Digital Input Source

1. Press Control.
2. Press Up or Down until the leftmost digit in the lower lefthand corner of the display is 0.
3. Turn SELECT to 0.0 Word Clock, and turn ADJUST to display Ext: XLR or Ext: Coax, depending on the input you are using.

Selecting Word Size

1. Press Control.
2. Press Up or Down until the leftmost digit in the lower lefthand corner of the display is 0.
3. Turn SELECT to 0.3 Word Size, and turn ADJUST to display desired Word Size.

- When using analog outputs as primary outputs, set Word Size to 20 bits.
Setting Analog and Digital Input Level

1. Press Control.
2. Press Up or Down until the leftmost digit in the lower lefthand corner of the display is 0.
3. Turn SELECT to 0.2 Dig In Lvl, and turn ADJUST to display 0%.

Note:

If you are not running digital audio, controlled by External Clock, into the PCM 81, the digital audio input will be disabled or muted. Until there is valid digital audio input, select 0.0 External to enable the digital input level control. Until valid digital audio is connected, the Dig In Lvl control will remain muted.

4. Turn SELECT to 0.1 Analog In Lvl, and turn ADJUST to display 100%.
5. Adjust the front panel INPUT knob so that program material level peaks cause the headroom display to reach the top of the column without lighting the overload indicators. An occasional large signal peak causing momentary flashing of the overload indicator is acceptable in most instances, but should be validated by listening to the actual result.
6. If you are running digital audio, turn SELECT back to 0.2 Dig In Lvl, and turn ADJUST to the desired level. You may want to back off the Analog In Lvl setting to prevent the analog/digital mix from overloading the effects processor.

Setting Output Level

While still in Control mode, turn SELECT to 0.6 Output Level. The Output Level parameter has two range positions. The appropriate position depends on the level handling capability of the device connected to the analog outputs. Devices capable of handling outputs with peak levels of 18dBu require setting Output Level to the +4dBu setting. Devices which cannot handle peak levels greater than +4dBu require the -10dBu setting.

CONFIGURATIONS

If you will be using a PCM 81 as your primary effects unit, and your system includes a console with one or more auxiliary (effects) sends, connect the PCM 81 as shown on the next page. In most applications, it is preferable to connect the PCM 81 outputs to two of the console’s input channel strips, panned full left and right, rather than to the effects returns. This allows the greatest flexibility in routing and equalization.

In this configuration the console controls are used to set the amount of effect heard—the PCM 81’s MIX control should be set for 100% wet. To assign a global MIX setting:

1. Press Control.
2. Press Up or Down until 1.x is displayed in the lower left of the display and System is displayed on the upper line.
3. Turn SELECT until System Mix Mode is displayed on the upper line. 1.1 will be displayed in the lower left.
4. Turn ADJUST until the lower line reads:
 1.1 *Global
5. Press Load /* to show the current global setting of MIX; use ADJUST to set it to 100% wet.
MEMORY CARDS

You can use Memory cards to store as many as 2350 PCM 81 registers (47 banks of 50 on a 1 Meg card). Registers stored on a properly formatted card will be recognized whenever the card is inserted, and can be accessed via the front panel Register Banks button, exactly as internal registers.

Memory cards can also be used to store "setups" (your system configuration, as set in Control mode). As many as 5 PCM 81 setups can be stored on a card, allowing you to transport not only your effects, but complete PCM 81 environments to another PCM 81. Cards also provide storage for additional program maps and effect chains.

See Control Mode Store and Load functions for details on saving setups on a card and reloading them.

Memory cards must be of the following type:

PCMCIA SRAM Memory Card — 68 pin, Type 1

<table>
<thead>
<tr>
<th>Usable densities:</th>
<th>64 kByte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128 kByte</td>
</tr>
<tr>
<td></td>
<td>256 kByte</td>
</tr>
<tr>
<td></td>
<td>1 MByte</td>
</tr>
</tbody>
</table>

| Access Time: | 250 nsec or faster |

Conforms to PCMCIA 2.0/JEDIA 4.1. Can use either 8-bit or 8/16-bit bus configuration. Attribute memory can be present, but is not used.
Basic Operation

Modes of Operation...2-2
 Navigating a Matrix • Go or Pro • Info

Control Mode ...2-5
 Row 0 Audio • Row 1 System • Row 2 Card • Row 3 MIDI • Row 4 Setup •
 Row 5 Mapx • Row 6 Chain

Program and Register Banks...2-17
 Selecting Effects

Tempo Mode ...2-19
 The Tempo Mode Matrix • Row 0 Tempo • Row 1 Tap

Editing an Effect..2-21
 The Soft Knob • The Soft Row • Compare • Bypass • Store Operations •
 The Full Edit Matrix • Patching
Basic Operation

The PCM 81 provides a wide range of control over an extraordinary set of reverb, delay, pitch and modulation effects. All of the controls are easily accessed from the front panel and are described in detail in this section.

MODES OF OPERATION

The PCM 81 has five basic modes of operation, each of which is selected by pressing a front panel button (Program Banks, Register Banks, Edit, Control and Tempo). Each of these first four mode buttons has an LED which lights when the mode is active. The Tempo LED (unless you elect to have this function turned off) flashes the current tempo. When Tempo mode is active, no other mode LEDs will be lighted.

• Press Register Banks to access a bank of 50 memory locations, called registers, where you can store your customized effects. Memory cards can be used for storage of additional banks of registers. When a formatted memory card containing stored registers is inserted, pressing Register Banks repeatedly will cycle through all of the available register banks.

• Press Edit to access all of the available parameters for the currently running effect.

• Press Control to select system parameters, MIDI, card formatting, etc.

• Press Tempo to set tempo-related values that affect the delay time and LFO rate parameters of the currently-running effect. This is an exciting feature which is unique to the PCM 81, and which will be described in detail later in this chapter.

NAVIGATING A MATRIX

All of the controls available in a mode are arranged in a matrix of up to 10 columns (numbered 0-9) and 10 rows (each numbered .0-.9). This arrangement allows any one of as many as 100 parameters to be selected simply by using the SELECT knob and the Up and Down buttons to select a position in the matrix.

GO OR PRO

The PCM 81 offers a choice between two levels of Edit mode parameter access. We call these Go mode and Pro mode.

Go mode makes use of an extra row in the edit mode matrix called the Soft Row, where you can assign as many as 10 effect parameters for easy access. Selecting Go mode (Control mode 1.0) limits the action of the Edit button to displaying only the Soft Row parameters assigned to the current effect.
Each preset has a set of Soft Row assignments which we’ve selected for you (as well as an assignment for the ADJUST knob). When shipped, the PCM 81 will power up in Go mode with the first preset (P0 0.0) loaded. Press Edit to display the Soft Row of parameters.

Pro mode gives you access to the full parameter matrix, including the Soft Row. Use this mode when you want to do in-depth effects editing or patching, or when you want to customize Soft Row assignments.

Go mode and Pro mode selection is made in Control mode at matrix location 1.0.
INFO

Info messages are displayed when a button is *pressed and held down*. Generally, info messages describe the function of a button, or provide current status information.

- Displays the currently loaded effect name, bank, and matrix location.
- Displays the current tempo and the clock source (MIDI or internal).
- Displays the current function assigned to the Up button and the Adjust knob.
- Displays the current function assigned to the Down button and the Select knob.
- Displays action needed to perform a store operation or Memory Protect message when store function is disabled.
- Displays the type of system bypass currently selected, and the current status (on or off).
- Inactive until an effect has been altered, then displays "Press to hear stored effect."

The PCM 81 offers an extensive set of informative display messages which can be activated from the front panel.

The front panel switches perform various functions when pressed. Most of these functions are activated on release of the button. If you want to know more about the function of a particular button (without actually executing any action) press and hold the button down. While you are holding down the button, an explanatory message will appear on the display. The activation of an Info message overrides the normal function of the button, so that no action is taken on release.
CONTROL MODE

Simultaneously press Up and Down to return to 0.0.

An asterisk (✱) accompanying a parameter name indicates that there are subparameters available at that matrix location. The Load/✱ LED will light whenever an asterisk appears in the display. Press Load/✱ to step to the next sub parameter. From any point the the matrix, press Up or Down together with Load/k to backstep to the previous parameter.

Selections of various system states and conditions are made in Control Mode. Press Control to enter this mode. The Control button LED will light to indicate that the mode is active. Note that Control Mode functions are not available when the Compare function is active.

The Control Mode matrix is shown above. Following are descriptions of each available selection.
Basic Operation

ROW 0 AUDIO

<table>
<thead>
<tr>
<th>0.0 Word Clock</th>
<th>0.1 Analog In Lvl</th>
<th>0.2 Dig In Lvl</th>
<th>0.3 Word Size</th>
<th>0.4 SCMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Word Clock</td>
<td>Anal Lvl</td>
<td>Dig Lvl</td>
<td>Word Siz</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>0.5</td>
<td>Emphasis Bit</td>
<td>Output Level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0.0 Word Clock

The PCM 81 can use its own internal clock as a timing reference, or it can reference an external clock source from the rear panel S/PDIF or AES jacks. Use ADJUST to select Ext XLR (AES), Ext Coax (S/PDIF), Int: 48kHz or Int: 44.1kHz. When either Internal rate is selected, the digital input is disabled. To process audio from the digital input, you must select Ext.

When External clock is selected, and the PCM 81 detects valid digital audio, the rate of the External word clock will be displayed with a label indicating the digital audio format type: Prf (Professional [AES]) or Cns (Consumer [S/PDIF]).

When External clock is selected, any loss of lock detected in the incoming digital audio, or reception of non-audio data will cause the PCM 81 to immediately mute the digital input, and switch to Internal clock at the sample rate of the last valid external signal. An error message will be displayed if this occurs. The PCM 81 will continuously try to re-establish lock, returning automatically to External clock if and when lock is confirmed.

The following types of errors are detected when the PCM 81 is set to Ext:

- **No Lock:** The PCM 81, at some point, lost lock to the incoming digital audio signal. Digital audio input is muted.
- **Out of Range:** The sampling rate of the incoming audio signal is outside of acceptable tolerance limits of +4%. Digital audio input is muted.
- **Non Audio:** Indicates transmission of non-audio data, such as from a CD ROM. Digital audio input is muted.

Dig In Status

Pressing Load/✱ from Word Clock will display the current digital input status. This status display is continuously updated, acting as a real-time monitor of the PCM 81 digital input. This display is active even when the PCM 81 is set to Internal clock. Note that in the case of an AES Pro format signal, "Emp:Yes" means either CCITT or 50/15µs emphasis.

If valid digital audio is detected, the display will show the external clock rate and format information, along with the status of the Emphasis bit(s) in the incoming audio signal. If the PCM 81 has lost lock, the display message will indicate "No Lock" and parenthetically show the internal clock rate now in use.

When the PCM 81 loses lock, it will mute the digital input and switch to Internal Clock.
Upon loss of lock, or reception of non-audio data, the PCM 81 will mute the digital input and display the following messages when Word Clock or Dig In Status is selected:

<table>
<thead>
<tr>
<th>Word Clock</th>
<th>Dig In Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Locked</td>
<td>No Lock (Int 44.1)</td>
</tr>
<tr>
<td>Out of Range</td>
<td>No Lock (Int 44.1)</td>
</tr>
<tr>
<td>Non Audio: 44.1</td>
<td>Non Audio: 44.1</td>
</tr>
</tbody>
</table>

Error Log

The following errors are continuously logged and are available for review by pressing Load/✱ from the Dig In Status display and using ADJUST to scroll through the error list:

- **Validity:** A Validity error indicates that the Validity bit was set in a frame of incoming data and that the data attached to it may be corrupted. This bit may also be sent when the transmitting device is paused.

- **Confidence:** The PCM 81 is detecting excessive jitter or noise on the digital audio line. No data has been corrupted, but corrective action should be taken.

- **SlipSample:** Indicates that a single sample is misaligned with the window defined by the Word Clock. This may occur when an external master changes sample rate, or when it is just powering up, but should not occur in normal operation.

- **CRC:** Indicates a Cyclic Redundancy Check error in the incoming data.

- **Parity, Biphase:** Indicate that at least one bit (and therefore at least one audio sample) was corrupted.

Parity, Biphase, and Confidence errors are most often caused by inappropriate cabling. Be sure to use 75Ω video-grade cable, kept as short as possible — standard audio cable will not work reliably. Each error is reported by name, with the number of occurrences of that particular type of error.

The display might show, for example "CRC: 4752". As many as 9999 instances of each error can be shown. If the number of actual errors exceeds 9999, the display will indicate ">9999". A special symbol (n) before the error type indicates the most recently received error.

Press Load/✱ from the Dig In Status display and use ADJUST to scroll through the Error Log.

A typical Error Log display showing that the last error received was a CRC error (CRC) and that there have been more than (>9999) 9999 instances of CRC errors since Word Clock was last set to Ext.

To clear the Error Log, reselect Ext from the Control Mode Word Clock display. This will cause the PCM 81 to attempt to lock to the current external source and will reset the Error Log. The log is also cleared on power up, and whenever it relocks (Auto Lock On).
0.1 Analog In Lvl

This is a master level control for analog left and right inputs. Use ADJUST to select values from 0-100%. If using only analog inputs, this should be 100% for best audio performance. Values between 0% and 100% are for mixing analog and digital sources.

Note:

If the analog signal being fed into the PCM 81 is too hot, turn it down by adjusting the front panel INPUT level control, or by changing the rear panel Input Gain switch. (See Setting Audio Levels in Chapter 1.)

0.2 Dig In Lvl

This is a master level control for the selected digital left and right input connector. Use ADJUST to select values from 0-100%. If using only digital inputs, this should be 100%, with Analog InLvl set to 0% for best audio performance. Values between 0% and 100% are for mixing analog and digital sources.

Note:

Only one digital input connector can be active: XLR (AES/EBU) or Coax (S/PDIF).

If digital audio is interrupted by lock or range errors, or by transmission of non-audio data, the digital input will be muted. Whenever this occurs, the PCM 81 remains functional, while an error message, such as those shown at the top of the next column, is displayed.

Any such message will remain on the display until you dismiss it by pressing any front panel button. If the condition causing the error is corrected, and the digital input is unmuted, the message will still remain until you dismiss it to ensure that you are informed of a condition that has muted digital audio, even if only for a brief period of time. Once the message is dismissed, the display will return to its previous state.

Some errors detected in an incoming digital audio signal will cause the PCM 81 to mute the digital input. When this happens, the Dig In Lvl display will show both the level you selected, and the fact that the signal is muted.

If you select the Dig In Lvl parameter while there is a lock, range, or non-audio error, the display will continue to show the level you have selected, and parenthetically show that the signal has been muted.

Note, if Word Clock is set to Int, Dig In Lvl is disabled. You must select Ext to process digital audio.
0.3 WordSize
The WordSize control allows you to dither the PCM 81 24-bit word size to match the device receiving digital audio from the PCM 81. If you are recording to the digital input of a DAT machine, select 16 bits. If you have a digital console with a 24-bit bus, select 24 bits.

If you are using the analog outputs, select 20 bits (the default setting).

0.4 SCMS
Digital audio signals, in order to comply with copyright standards, are encoded with control information which can limit the ability to copy audio data. This control information is generally known as SCMS (Serial Copy Management System). Under this system, you can choose to have the audio material processed by the PCM 81 encoded to allow one of three levels of copy restriction. To make your selection, use ADJUST to select No Copy, One Copy, or Multi Copy.

0.5 Emphasis Bit
The Emphasis control allows you to explicitly set the emphasis "flag" in the digital audio, or to pass along the incoming signal without changing its emphasis coding. (The PCM 81 does not perform any emphasis or de-emphasis as part of its signal processing. The AES input/output path will correctly pass either 15/50 or CCITT emphasis.) The choices available with ADJUST are: Yes, No, and Pass Thru.

0.6 Output Level
This control allows you to select the maximum output level at the PCM 81's analog outputs. Use ADJUST to select +4 dBu, or –10dBu.

>Note:
Exercise care when switching this control, as a 14dB level change instantly occurs when going from -10dBu to +4dBu.

ROW 1 SYSTEM

<table>
<thead>
<tr>
<th>1.0 Edit Mode</th>
<th>1.1 Mix Mode</th>
<th>1.2 Tempo Mode</th>
<th>1.3 Bypass Mode</th>
<th>1.4 Pgm Bypass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 Mem Protect</td>
<td>1.6 Auto Load</td>
<td>1.7 Patch Update</td>
<td>1.8 Initialize</td>
<td></td>
</tr>
</tbody>
</table>

1.0 Edit Mode
The PCM 81 has been designed with a "plug and play" feature called Go mode. In this mode, the most useful parameters of each effect are grouped together in a single row which is available whenever you press Edit.

Each PCM 81 preset has a set of Go mode parameters which we’ve selected for you. When shipped, the PCM 81 will power up in Go mode, with the first preset (P0 0.0) loaded. Press Edit to display the first available parameter in the Soft Row.

If you want access to the full parameter matrix for any effect, including the Soft Row parameters, use ADJUST to select Pro mode. Now, when Edit is pressed, you can select any parameter for adjustment, and customize any effect with your own Soft Row assignments. For more information about the Soft Row, see Editing an Effect later in this chapter.
Basic Operation

1.1 Mix Mode
Each PCM 81 effect has its own Mix parameter, with the Mix setting stored as an integral part of the effect. Mix Mode allows you to override these individual Mix settings and set a global Mix value for all effects. This is useful when using a mixing console's controls to set the amount of wet signal in a mix. In such a case, you can use this control to set all PCM 81 effects to 100% wet.

When shipped, the PCM 81 has the Mix Mode set to Pgm. This setting determines that effects will be loaded with their stored Mix settings, and allows the individual Mix controls in the edit matrix of each effect to be adjusted from 0-100% Wet. To set a global Mix value, use ADJUST to select Global, press Load/* to display the current value, and use ADJUST to assign any value from 0-100% Wet.

1.2 Tempo Mode
The PCM 81 gives you an exciting new approach to working with delay times and modulation parameters. Now you can set these parameters in beats, allowing you to control your effects in a completely musical way. Each PCM 81 effect has its own Tempo parameters, with tempo settings stored as an integral part of the effect. These include: Tempo Rate, Tempo Beat, Tempo Source (internal or MIDI), Tap Duration, and Tap Average. The Global setting here allows you to override individual Tempo Rate settings with a global value which can then be changed on the fly.

When shipped, the PCM 81 has the Tempo Mode set to Pgm, with each effect driven by its own stored tempo rate. To change to a global Tempo Rate, use ADJUST to select Global, press Load/* to display the current tempo in BPM (beats per minute), then use ADJUST to assign a global tempo value of 40-400BPM.

Whether Tempo Mode is set to Global or Pgm, you can set a new tempo rate by pressing the front panel Tap button twice. Alternatively, you can choose to have tempo set automatically from incoming MIDI clock. The rate you tap, or the MIDI tempo, will be displayed here.

For more information about working with the tempo parameters, see Tempo Mode later in this chapter.

1.3 Bypass Mode/Bypass Src
This control allows you to determine the behavior of the PCM 81 when the front panel Bypass button is pressed. You can also assign an external controller to perform identically to the front panel button. When the Bypass button is pressed, the LED will light, and a message indicating bypass type will be displayed. Pressing Bypass again will turn bypass off.

The choices available via ADJUST are:
- **AllMute:** Mutes both the input and the output signal, giving complete silence.
- **InputMute:** Mutes the input to the PCM 81, allowing the tail of the effect to ring out. (This is the default setting.)
- **OutputMute:** Mutes the output. Audio signals are still being fed to the PCM 81, so processed audio returns immediately when Bypass is turned off.
- **Bypass:** Completely bypasses the PCM 81, passing unprocessed audio directly through to the outputs.
To assign an external controller to perform the selected bypass function, press Load/✱ to display Bypass Src. Use ADJUST to select a footswitch or any MIDI controller (or Off). Once a source is selected, it will perform the same function assigned to the front panel Bypass button.

1.4 Pgm Bypass
This control allows you to determine the behavior of the PCM 81 when a new effect is loaded. The choices available are: AllMute or Bypass.

1.5 Mem Protect
The PCM 81 provides a memory protection feature to prevent accidental overwriting of your stored effects. When this control is set to On, pressing the front panel Store button will cause an error message to be displayed. To enable the Store function, turn ADJUST to select Off.

1.6 Auto Load
This control allows you to choose whether PCM 81 effects will be loaded immediately when selected with SELECT and the Up and Down buttons (On), or whether they will require a press of the Load/✱ button (Off).

1.7 Patch Update
When a controller is patched to an effect parameter, this control determines when the controller will take control of the parameter. If Immediate is selected, stored parameter values will jump to the current controller position when the effect is loaded. If Delayed is selected, the stored parameter value will remain in effect until the controller is moved. See Patching later in this chapter.

1.8 Initialize
Selecting this control arms the PCM 81 to revert to its factory settings. This will erase all registers and setups, and return the PCM 81 to its default states.

If you press Store, the display will ask "Are you sure?" (Press STORE). If you don't want to reinitialize your unit, press any button to cancel the operation. If you press Store in response to this message, the display will flash "Restoring original factory settings" and your unit will be reinitialized.

ROW 2 CARD
This control allows you to copy banks of effects from one location to another. Banks can be copied internally, or to and from PCMCIAMemory Cards. Try, for example, copying Preset Bank 0 into the internal Register Bank.

1. Press Store. The following display will appear briefly:

Select and copy effect banks

...continued on page 2-12
2.0 Bank Copy (continued)

The display will then change to show:

```
Card   Bank Copy
2.0    Src: *P0    Dst: R
```

The asterisk indicates that Src is available for adjustment. ADJUST will scroll through all available banks, including internal preset and register banks, as well as any banks on inserted PCMCIA cards. Internal banks are labeled "P0...P3" and "R1". Card registers will be labeled "C0, C1, C2" etc.

2. Press Load/* to move the asterisk to Dst.

```
Card   Bank Copy
2.0    Src: P0    Dst: *R
```

Now, use ADJUST to select the destination of your copy. Selecting a register bank here will cause its contents to be erased and overwritten with the bank you have selected as the source when Store is pressed.

4. Press Store to copy the selected source (in this case Preset Bank 0) into the internal Register Bank. The display will ask "Are you sure?" (Press STORE). Press any button to cancel. Press Store to complete the store operation.

2.1 Load

This control allows you to load audio software from a Memory Card simply by inserting the new card and responding to the display prompts. The PCM 81 can load all PCM 80 algorithm cards. It can also share registers, maps, and chains with the PCM 80 via RAM cards. (Sharing Setups between the PCM 80 and the PCM 81 is not recommended.)

2.2 Format

This control allows you to format a Memory Card for PCM 81 use. Press Store and insert an unformatted card (or one you don't mind erasing). Make sure the Write Protect latch on the card is set to Off. Press Store. The display will ask "Are you sure?" (Press STORE). Press Store. The following display will appear briefly:

```
Card Name: N ew Card
```

This display allows you to assign a name (of 10 characters or less) to the card. A blinking cursor indicates that a particular character is available for changing. Use ADJUST to select the character you want in that position. Turn SELECT to select the character. Press Store to execute. The display will ask "Are you sure?" (Press STORE). Press Store again to complete the operation. Press any front panel button to cancel.
ROW 3 MIDI

3.0 Reset
This control resets all patched parameters to their previously stored values. When this control is activated, a MIDI "Reset All Controllers" message is also transmitted on the current channel by the PCM 81.

3.1 Receive
Use ADJUST to select OFF, 1-16, or OMNI for receipt of MIDI messages.

3.2 Transmit
Use ADJUST to select OFF or 1-16 for transmission of MIDI messages.

3.3 Pgm Change
This control specifies the PCM 81's response to incoming MIDI Program Change messages. There are four selections available via ADJUST: On, Off, Map and Chain. Pgm+ and Pgm– are available as subparameters in each location. Pgm+ loads the next higher effect in the current bank, map, or chain. Pgm– loads the next lower effect. The following sources activate Pgm+ and Pgm–:

| Off |
| Footswitch 1 |
| Footswitch 2 |
| * |
| MIDI Controller #119 |

On
Program Change messages 0—49 correspond to PCM 81 Effects 0.0 — 4.9 in the current bank. Program Change messages 50—127 are ignored. The current bank can be changed with MIDI Bank Select Messages as follows:

- 0–5: Program Banks 0–5
- 6: Internal Register Bank
- 7–11: reserved
- 12–58: Memory Card Banks. The number of banks available on a given card will vary with its size, as follows:

<table>
<thead>
<tr>
<th>Card Size</th>
<th># Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>256</td>
<td>11</td>
</tr>
<tr>
<td>512</td>
<td>23</td>
</tr>
<tr>
<td>1 Meg</td>
<td>47</td>
</tr>
</tbody>
</table>

Off
All Program Change and Bank select messages are ignored.

Map
Program Change 0-127 can be mapped to any PCM 81 effect in any internal or card bank. Two 128 element maps are stored internally, additional maps may be stored on RAM cards. Once you have selected Map, press Load/✱ to display:

Turn ADJUST to select the desired Program Change Map.
Basic Operation

Chain
Any Program Change number can be selected to load any one of ten customized effect “chains”. Additional chains can be stored on RAM cards. Once a chain is loaded, effects in the chain are accessed by the controller patched to Pgm + and Pgm – (program increment and program decrement). Once you have selected Chain, press Load/✱ to display:

Turn ADJUST to select the desired Program Chain. When set to MIDI, Program Chains will be loaded by MIDI Program Change messages according to the settings of Chain Pgm Assign in Row 6.

To load a specific Program Chain, without sending the PCM 81 a MIDI Program Change message, use ADJUST to display the desired chain number:

3.4 Automation
This control is provided for communication with one or more additional PCM 80s or PCM 81s. Select On to have values resulting from front panel operations sent out as SysEx messages. Press Load/✱ to select the ID (0-126 or All) of the target PCM 81(s).

Automation sends all MIDI commands in PCM 80 format, which is also recognized by the PCM 81. As the PCM 80 has only four Banks (0-3), it cannot load programs from PCM 81 Banks 4 and 5 in Automation mode.

3.5 Send (Foot Pedal, Foot Sw 1, Foot Sw 2, ADJUST)
If Transmit is set to On these four controllers can transmit MIDI controller messages. Press Load/✱ to cycle through controller selections. Use ADJUST to select the MIDI Controller message to transmit.

3.6 Int Clock
You can choose to have the PCM 81 transmit MIDI Clock at the current tempo rate by setting this control to On and Tempo mode Source (0.2) to Internal. If this control is set to Off, MIDI Clock will not be transmitted.

3.7 SysEx
This control is provided for communication with one or more additional PCM 81s or computer editor software. On (the default setting) allows SysEx messages to be received by the PCM 81. Press Load/✱ to select device ID (0-126).

3.8 Dump
Press Store to configure the PCM 81 to execute MIDI dumps of single effects, banks, maps, chains, or setups. With the exception of Setup Dumps, all dumps are transmitted in PCM 80 format, which is also recognized by the PCM 81. You can dump from the front panel of either unit to the other. As the PCM 80 has only four Banks (0-3), references to Banks 4 and 5 will be ignored when transmitted to a PCM 80.
3.9 Dump Speed

Turn ADJUST to select dump speeds of Slow, Medium or Fast to achieve compatibility with the connected MIDI device.

ROW 4 SETUP

<table>
<thead>
<tr>
<th></th>
<th>4.0</th>
<th>4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup</td>
<td>Store</td>
<td>Load</td>
</tr>
</tbody>
</table>

4.0 STORE

Control mode Audio, System, and MIDI parameter settings, along with two settings from the Tempo matrix, comprise a "Setup." Five setups can be stored in the unit, or on a Memory Card, allowing you to transport not only your effects, but complete PCM 81 environments to another PCM 81. Press Store to initiate the Setup Store function.

When the PCM 81 is shipped (or when you reinitialize the unit) default values are assigned to these parameters. The following table shows the Setup parameters along with the factory default setting of each parameter.

4.1 Load

This control allows you to load your stored setup, restore the default setup shown at the right, or load a setup from a Memory Card.

<table>
<thead>
<tr>
<th>Control Mode Matrix Location</th>
<th>System Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio 0.0</td>
<td>Word Clock</td>
<td>Internal 48kHz</td>
</tr>
<tr>
<td>0.1</td>
<td>Analog Lvl</td>
<td>100%</td>
</tr>
<tr>
<td>0.2</td>
<td>Digital Lvl</td>
<td>0%</td>
</tr>
<tr>
<td>0.3</td>
<td>Word Size</td>
<td>20 bits</td>
</tr>
<tr>
<td>0.4</td>
<td>SCMS</td>
<td>Multi Copy</td>
</tr>
<tr>
<td>0.5</td>
<td>Emphasis Bit</td>
<td>Pass Thru</td>
</tr>
<tr>
<td>0.6</td>
<td>Output Level</td>
<td>+4dBu</td>
</tr>
<tr>
<td>System 1.0</td>
<td>Edit Mode</td>
<td>Go</td>
</tr>
<tr>
<td>1.1</td>
<td>Mix Mode</td>
<td>Pgm</td>
</tr>
<tr>
<td></td>
<td>Global Mix Value</td>
<td>100% Wet</td>
</tr>
<tr>
<td>1.2</td>
<td>Tempo Mode</td>
<td>Pgm</td>
</tr>
<tr>
<td></td>
<td>Global Tempo Value</td>
<td>120 BPM</td>
</tr>
<tr>
<td>1.3</td>
<td>Bypass Mode</td>
<td>InputMute</td>
</tr>
<tr>
<td></td>
<td>Bypass Src</td>
<td>Off</td>
</tr>
<tr>
<td>1.4</td>
<td>Pgm Bypass</td>
<td>AllMute</td>
</tr>
<tr>
<td>1.5</td>
<td>Mem Protect</td>
<td>On</td>
</tr>
<tr>
<td>1.6</td>
<td>Auto Lock</td>
<td>Off</td>
</tr>
<tr>
<td>1.7</td>
<td>Patch Update</td>
<td>Delayed</td>
</tr>
<tr>
<td>MIDI 3.1</td>
<td>Receive</td>
<td>OMNI</td>
</tr>
<tr>
<td>3.2</td>
<td>Transmit</td>
<td>1</td>
</tr>
<tr>
<td>3.3</td>
<td>Pgm Change</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Pgm+</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Pgm−</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Map select</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Chain</td>
<td>MIDI</td>
</tr>
<tr>
<td>3.4</td>
<td>Automation</td>
<td>Off</td>
</tr>
<tr>
<td>3.5</td>
<td>Footpedal</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sw 1</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sw 2</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>ADJUST</td>
<td>None</td>
</tr>
<tr>
<td>3.6</td>
<td>Int Clock</td>
<td>Off</td>
</tr>
<tr>
<td>3.7</td>
<td>SysEx</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Device ID</td>
<td>0</td>
</tr>
<tr>
<td>3.9</td>
<td>Dump Speed</td>
<td>Slow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempo Mode Matrix Location</th>
<th>System Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo 0.2</td>
<td>Source</td>
<td>Internal</td>
</tr>
<tr>
<td>Tap 1.3</td>
<td>Display</td>
<td>On</td>
</tr>
</tbody>
</table>
ROW 5 MAPX

Map 0 and Map 1

When Control mode 3.3 is set to Map, received MIDI Program Change messages will be mapped according to the selections made here. The selections available are: MIDI Program Change # (0-127), Bank # (PCM 81 preset, register, or card bank) and Pgm # (PCM 81 effect number 0-49). When shipped, the PCM 81 has the two internal maps configured to access all presets and registers:

<table>
<thead>
<tr>
<th>Map 0</th>
<th>Map 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDI 0 = P0 0.0</td>
<td>MIDI 0 = P2 2.8</td>
</tr>
<tr>
<td>MIDI 127 = P2 2.7</td>
<td>MIDI 121 = R 4.9</td>
</tr>
</tbody>
</table>

ROW 6 CHAIN

The PCM 81 has 10 internal program chains, numbered 0-9. (Ten additional chains are available if a register card is inserted.) Each chain is made up of 10 "links" (numbered 0-9). You can assign any program or register to any link in the chain.

A chain can be loaded with a MIDI Program Change message, or by selecting its number directly at Control mode 3.3. Once a chain is loaded, the source assigned to Pgm+ and Pgm– will load the next higher or lower program in the chain.

Pgm Assign

When Control mode 3.3 is set to Chain, received MIDI Program Change messages will be mapped according to the selections made here. Two assignments are available: MIDI Program Change # (0-127) and Chain # (0-9). When the PCM 81 is shipped, all program numbers are mapped to Chain #0. To change assignments, set Pgm#, with ADJUST, press Load/✱ to move the✱ to Chain# and set it with ADJUST. (You cannot assign more than one chain/MIDI #.)

Chain 0-9

Use SELECT to choose a chain. Once a chain is selected, any PCM 81 program or register can be assigned to any link in the chain. Press Load/✱ to move the✱ from Link# to the Bank ID, to the program number. Depending on the field marked with the✱, ADJUST will select link numbers 0-9, Banks (Pn or Rn), or the desired program within the displayed bank.
PROGRAM AND REGISTER BANKS
The PCM 81 has 300 factory-designed programs, organized into six Program Banks of 50 each, and 50 memory locations, called registers, for storing your customized effects. One Register Bank is available in the PCM 81 itself. Additional Register Banks can be stored on PCMCIA cards.

A Register Bank provides 50 memory locations for storing your own effects.

SELECTING EFFECTS
The procedure for loading effects is the same, whether you are choosing from banks of factory presets, or from your own banks of registers. When first turned on, the PCM 81 will load whatever effect was running when it was last turned off. When shipped from the factory, the first effect in the first Program Bank (P0 0.0 Prime Blue) is loaded. The Bank ID (P0, P1, P2, P3, P4, P5), matrix location, program name, and the algorithm from which the effect is derived are all displayed.

Indicates that the ADJUST knob is patched to one or more parameters in the currently-running effect - in this case, Prime Blue.

Press Program Banks to cycle through the program banks. Simultaneously press Program Banks along with either Up or Down to backstep.

Turn SELECT to scroll through all 300 effects. Press Program Banks to reselect the last displayed effect in another bank. Press Load/✱ to load the displayed effect.

In the Program and Register Banks, ADJUST is a Soft Knob. Each of the factory-designed programs has one or more parameters patched to this knob, providing a quick way to make useful changes to the effect. For example, in P0 0.0 Prime Blue, ADJUST varies the mix of Chorus, Echo and Reverb effects.
The ■ symbol in the upper left corner of the display indicates that the currently running effect has an ADJUST knob patch. (When you display another program or register, this indicator continues to be displayed.) Turning ADJUST will cause the display to change to show the patch name and the current value, as well as the Bank, matrix location and name of the currently running effect. Continue turning ADJUST to alter the patched parameter’s value. You can create your own ADJUST knob parameter assignments for your registers. (See Editing, later in this chapter.)

```
    Turn ADJUST to briefly display the Soft Knob assignment.
```

![Current Soft Knob parameter setting. Turn ADJUST to alter this value.
Bank ID, matrix location, and name of currently-running effect.

Note that scrolling through the effects in the Program or Register banks will not load the effects, but will merely display them (unless you have specifically turned on the Auto Load function in Control Mode). Displayed effect names will be preceded by an ✱ indicating that they can be loaded by pressing Load/✱. (The Load/✱ LED will light to indicate that the load function is available.) To find out at any time what the currently running effect is, press and hold Program Banks or Register Banks. An Info message will be displayed providing the name bank and matrix location of the currently running effect.

```
To select an effect stored in a register, press Register Banks. If you have registers stored on a memory card, and have the card inserted, pressing Register Banks repeatedly will cycle through all of your stored bank selections. Simultaneously press Register Banks along with either Up or Down to backstep. Turn SELECT to scroll through all of the effects in the bank. As in Program Banks mode, an asterisk in front of the effect name indicates that the displayed effect is not loaded. Press Register Banks to reselect the last displayed effect in another bank. Unused registers are indicated by the message "available" on the display. Press Load/✱ to load the displayed effect.
```

![Register Bank ID
The PCM 81's internal register is labeled R; register banks created on memory cards will be labeled C0, C1, C2, etc.
Matrix Location
The name you assign to a stored effect will appear here. "available" indicates that no effect has been stored at this location.

The organization of programs in the six program banks and descriptions of the 300 preset programs are given in Chapter 3.
TEMPO MODE

The PCM 81 gives you unique control over tempo. In the PCM 81, tempo is not just a matter of setting echo rates. Any delay parameter (as many as 10 in some effects) and any time-based modulator (LFO, Sw1 and Sw2) can be individually assigned to an absolute time value, or assigned to a tempo value.

For example, a delay time can be set to a specific number of milliseconds, and you will always get a delay of that number of milliseconds, regardless of tempo changes. Alternatively, a delay time can be set to a specific ratio of echoes to beats. Now, if you create a rhythmic echo pattern, delay times will be linked to tempo. When you change tempo, the delay time will change to maintain the same rhythm at the new tempo.

With the LFO and time-based switches, the rate of change can be an absolute value (such as once per second), or it can be linked to tempo (for example, once every four beats). Any delay parameter, or time-based modulator, can be set to its own individual rhythm, allowing you to set up an effect which will change in a rhythmically interesting way — evolving over time, for example, as opposed to being a mere series of repetitions. Once delays and time-based modulators are assigned, tempo rate can be easily changed in a variety of useful ways.

Tempo Rate can be set internally or via MIDI. If Tempo Source is set to Internal, you can dial in any tempo from 40-400 BPM at location 0.0 in the Tempo mode matrix. Alternatively, you can press the front panel Tap button twice in rhythm to establish the rate you want, or you can have the value of a patch source act as a tap trigger. (See Patching.) The Tap function, whether performed by the front panel Tap button, or by an assigned controller, is always active, allowing you to change tempo on the fly from any mode.

You can also choose to have your tempo transmitted as a MIDI Clock signal to control the tempo of connected MIDI devices. (Control mode 3.6) If Source is set to MIDI Clock, PCM 81 tempo will sync to incoming MIDI Clock. Whether tempo is set internally or via MIDI, the LED in the Tempo button will flash at the current rate. (You can disable the Tempo LED flashing under Tempo mode 1.3.) Press and hold the Tempo button at any time to display the current Tempo Rate and Source.

Each effect in the PCM 81 has its own tempo rate setting which is stored with the effect. You can override these individual tempo rates with a global tempo rate at Control Mode 1.2. Tempo is also available as an independent patch source which can control any effect parameter. (See Patching later in this chapter.)
Basic Operation

THE TEMPO MODE MATRIX
Press Tempo to access the following tempo parameters:

<table>
<thead>
<tr>
<th>Tempo</th>
<th>Rate</th>
<th>Beat Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Simultaneously press Up and Down to return to 0.0.

0.2 Source
You can choose to have tempo determined by the PCM 81 Tap and Rate controls (Internal), or by MIDI Clock. When MIDI Clock is selected as the tempo source, Tap acts as a reset, setting the down-beat of the LFO and the time-based switches.

ROW 1 TAP

1.0 Tap Duration
This control determines how many beats will occur in a tap interval. The default setting (1 beat) is probably adequate for most applications. With the default setting of 1 beat, if the tempo is set to 120 bpm, and the beat value is set to quarter-note, each TAP = 1 quarter-note = 1 beat. Available values are: 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1-8 beats

1.1 Tap Source and Tap Level
Press Load/✱ to toggle between these two controls. Tap Source allows you to assign the Tap function to any of the PCM 81’s Internal, MIDI, or MIDI controllers as listed under Patching. Tap Level allows you to set the level at which the Tap function is triggered.

example, the rate is 120 BPM, and you select eighth-note here, the tempo will be 120 eighth-notes per minute. If you select quarter-note here, the tempo will be 120 quarter-notes per minute. (The factory default is quarter-note.)

0.0 Rate
This is the current tempo (in Beats Per Minute). When 0.2 is set to Internal, turning ADJUST allows you to select a different rate (40-400 BPM). The Tempo LED will flash at the new rate. Note that fractional tempos can be tapped in, but are not available via ADJUST. The display will always show the nearest whole number value.

0.1 Beat Value
Tempo is expressed in BPM. This control allows you to specify the value of the beat. Eighth, dotted-eighth, quarter, dotted-quarter, half, dotted-half, and whole-note values are available. If, for
1.2 Average
This control allows you to average the last 2-8 taps. Higher numbers mean that the response to incoming taps will be more gradual. (The tempo is updated on every tap, but with a value which is the average of the last 2-8 taps.) Higher average values are more useful if you're trying to lock into a pre-recorded track.

1.3 Display
This control allows you to disable the flashing of the Tempo LED. Turn ADJUST to select Off. The Tempo LED will turn off.

EDITING AN EFFECT
With 17 algorithms and 300 preset effects, the PCM 81 gives you a lot to play with right out of the box. An enormous range of editing control is provided for each algorithm, with parameters organized in an edit matrix of as many as 100 main controls. In addition to providing this powerful sound design capability, the PCM 81 is also designed to allow you to customize these controls for your day-to-day editing needs, or to simply use a subset of controls specially designed for each preset.

This section will describe three basic levels of editing, from the simplest "plug and play" method, through the full edit matrix.

THE SOFT KNOB
Every preset in the PCM 81 has one or more of its available parameters patched to the front panel ADJUST knob. This Soft Knob provides the first level of editing control. Once you have loaded a preset, simply turn ADJUST to alter the effect.

When shipped, the PCM 81 will power up with the first preset (P0 0.0 Prime Blue) loaded. The following display will appear:

Indicates that the ADJUST knob is patched to one or more parameters in the currently-running effect. This indicator will stay on even if another effect is selected for display.

Turn ADJUST. The display will change to show the name assigned to the ADJUST patch, and the current value of the patch. Continue turning ADJUST to change the value of the patch along its entire range. The range of ADJUST knob control can be limited in Control Mode, making it possible, for example, to have a range of only 0...1, in order to have the ADJUST knob behave as an Off/On control. Many of the presets have range limits to make them more convenient to use. In some of the presets, the changes effected by ADJUST will be as simple as altering the wet/dry mix. In others, such as the example shown below, turning ADJUST will glide you all the way from a chorusing effect to a reverb effect over the complete control range of 0-127.

The name that has been assigned to the ADJUST knob patch is shown here. The current value of the patched parameter(s) appears here. Turn ADJUST to alter this value.
Details on how to create your own ADJUST knob patches are given at the end of this chapter under Patching.

Beyond simple ADJUST knob editing, the PCM 81 offers two levels of editing control, called Go mode and Pro mode. Go mode is designed to be a basic "plug and play" mode, with easy access to a specific set of preset parameters. For each of the 300 presets, we have designed a Soft Row containing those parameters which allow you to make value changes to the effect without losing the character of the sound.

Controlling the Soft Knob with a Foot Pedal

If you have a foot pedal connected to the PCM rear panel Foot Controller jack, you can use it to control the soft knob patch. (Note that no MIDI connections are required to do this.)

To assign a foot pedal control over the soft knob patches, set both Control mode 3.5 ADJUST and Control mode 3.5 Foot Pedal to the same MIDI Controller. See Chapter 5 MIDI Operation.

THE SOFT ROW

When shipped, the PCM 81 will power up in Go mode with the first preset (P0 0.0 Prime Blue) loaded. Press Edit to display the Soft Row of parameters which have been designed for this preset. In the example on the next page, 10 soft row parameters have been assigned. The name of each Soft Row parameter is displayed, along with a reference to its row in the Edit matrix.

Turn SELECT to scroll all of the available parameters in the Soft Row. Turn ADJUST to change the value of any displayed parameter along its entire range.

COMPARE

Whenever you edit a PCM 81 effect from the front panel, the LED in the Compare button will light. This lets you know that the effect has been altered since the last store operation, and that the edit compare function is active. Whenever this light is on, you can press Compare to hear the original version of the effect. A message will be displayed to inform you that the stored version of the effect is being loaded. Although this message is only displayed briefly, the Compare LED will flash to let you know the effect you are hearing is the stored version. While Compare is on, you can use the SELECT knob and the Up and Down buttons to view parameter values in the stored effect.

Press Compare again to reload your edited version. Another message will be displayed, and the Compare LED will stop flashing and remain lit until you store your edited version, or select and load another effect. Altering parameter values with patched sources other than ADJUST will not light the LED.

The Compare light is off until you make changes to an effect.

As soon as you alter an effect, the Compare light will go on.

If you press Compare while the light is on, a message will be displayed . . .

. . . and you will hear the original (stored) version of the effect. You can display the parameter values of the stored effect with Select and Up and Down.

The Compare light will flash until you press Compare again to reload the edited version of the effect. While Compare is on, you cannot select another effect.
Each preset has a Soft Row of parameters which have been specifically selected to provide everything you need to play with the effect. This example shows the Soft Row for P0 0.0 Prime Blue. An asterisk in front of a displayed parameter indicates additional parameters are available when you press Load/✳.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Current Parameter Value</th>
<th>Soft Row Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls Mix</td>
<td>Mix</td>
<td></td>
</tr>
<tr>
<td>Controls High Cut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls FX Width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Time Mid Rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Time Pre Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Time HC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big Time Mix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre Delay Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>Master LFO</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>Modulator 1</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>Modulator 2</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 0</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 1</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 2</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 3</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 4</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 5</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 6</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 7</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 8</td>
<td></td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 9</td>
<td></td>
</tr>
</tbody>
</table>

Soft Row parameters are derived from the full Edit matrix (with the exception of the Patch row). In the presets, they are arranged according to their numerical order in the matrix.
BYPASS
The front panel Bypass button is always active, and will turn on the type of bypass (AllMute, InputMute, OutputMute, or Bypass) selected in Control Mode 1.3.

When you press Bypass, the button LED will light and a message will be displayed to inform you that bypass is on. The display message will also indicate the type of bypass which is in effect. Press Bypass again to turn both the LED and the bypass condition off. A brief display message will inform you that bypass is off.

Press and hold Bypass to display the current state and type of bypass.

STORE OPERATIONS

Turning Memory Protection Off
The PCM 81 is shipped with its Memory Protection option on. When you press the front panel Store button, the following message will be displayed:

```
Store not active
Mem Protect is on
```

To turn Memory Protection off, press Control and use Up and Down and SELECT to display matrix location 1.5. The display should read:

```
Name: Prime Blue
R 0.0 available
```

If you press Store again, the display will ask "Are you sure?" (Press STORE). Pressing Store will cause the currently running effect to be saved, as is, in the location shown in the lower lefthand corner of the display. A brief message will inform you that the effect is being stored, then the PCM 81 will revert to the mode it was in before Store was pressed, with the newly-stored effect loaded.

Turn ADJUST to select Off.

Storing an Effect
With Memory Protection disabled, pressing Store will cause a message like the following one to be displayed:

```
Storing an Effect
```

An asterisk (*) is positioned in front of the display label which is available for changing - in this case, the name of the effect.

The default bank and register will appear here.

Press Load/* to select the ADJUST patch for renaming. Press again to select the register bank. Press again to select the register location within the selected bank.

"available" means that this location is empty. If an effect is stored at this location, its name will appear here.
When you store an effect, the following things are saved:

- Values of all Edit matrix parameters. This includes the initial values for any patch destinations when Patch Update (Control mode 1.7) is set to Delayed.
- Soft Row parameter assignments.
- Value of ADJUST when the effect was stored.
- Last parameter selected when the effect was stored.
- Tempo Rate and BeatValue.
- Tap Duration and Average.
- ADJUST name.
- Effect name.

How the PCM 81 Selects a Default Bank and Register

If a register is loaded when Store is pressed, the default location will be the same as the loaded effect. If a preset is loaded when Store is pressed, the default location is determined as follows:

The PCM 81 always uses the last-stored register location as a starting point. Its default choice is the next "available" register within that bank. If there are no available registers at a higher location number within the same bank, the default location will be that of the last stored register.

If the last stored register is on a RAM card, and the RAM card is not inserted, the PCM 81 will search for available registers starting at 0.0 in the Internal Register Bank.

Renaming the Effect

Renaming an effect is straightforward. With the asterisk and the cursor positioned as shown, turn ADJUST to select a new character. Press Up or Down to select a new type of character (upper case, lower case, numeric, symbolic, or blank). Simultaneously press Up and Down to clear all characters from the cursor to the end of the line. Turn SELECT to reposition the cursor over another character, and use ADJUST to change it. Continue in this manner until you have finished entering the new name. A maximum of 12 characters (including spaces) may be used.

Use ADJUST to select a new character. Turn SELECT to move the cursor to another position.

Renaming the ADJUST Knob Patch

Press Load/✱ to select the ADJUST patch for renaming. The display will change to show the following:

The name of the ADJUST Knob patch will appear here. Use ADJUST to select a new character. Turn SELECT to move the cursor to another position.
Basic Operation

Selecting a Bank and Register Location
Press Load/✱ to move the asterisk to the Register Bank ID.

When the asterisk is positioned in front of the Bank ID, ADJUST or SELECT will scroll through available register banks.

Press Load/✱ again to move the asterisk to the register matrix location.

When the asterisk is positioned in front of the register matrix location, ADJUST or SELECT will scroll through the available registers.

Once you have made all the changes you want to an effect, and have selected a register location, press Store. If you press Store, the display will ask "Are you sure?" (Press STORE). If you don't want to save the effect as shown, press any button to cancel the operation. Press Store to complete the operation.

THE FULL EDIT MATRIX
Setting Edit Mode to Pro (Control Mode 1.0) gives you access to the full parameter matrix of the algorithm for any loaded effect whenever you press the front panel Edit button.

To select any parameter for adjustment, use SELECT to move horizontally across the matrix and the Up and Down buttons to move vertically. An asterisk (✱) appearing before a displayed parameter indicates that more than one parameter is available at that location. Press Load/✱ to display these additional parameters.

Each of the 17 PCM 81 algorithms has a unique matrix, but many parameters are common to all effects, and their placement within the matrix is consistent. For example, all parameters within a given row of any matrix are related. This type of grouping is immediately apparent from the name of the row. For example, the "Levels" row in any matrix will contain all of the available level controls for the effect’s delay voices.

As far as possible, rows with similar controls will always appear in the same position in the matrix and, within each row, parameters will generally appear in the same position. For example, the first row (0) in every algorithm is "Controls". The Mix parameter, which is available in all effects, is always located in position 0 in this row. Similarly, the last two rows of every matrix are "Modulation" and "Patches". This makes it very easy to find your way around the large number of available parameters, and to anticipate where to find the controls you are looking for when you switch between effects.

Detailed information about each individual edit matrix, as well as parameter and effect descriptions are given in Chapter 3.
Concert Hall

<table>
<thead>
<tr>
<th>Controls</th>
<th>Mix</th>
<th>0.1</th>
<th>FX Adjust</th>
<th>0.2</th>
<th>*InLv/Pan</th>
<th>0.3</th>
<th>High Cut</th>
<th>0.4</th>
<th>Voice Diff</th>
<th>0.5</th>
<th>FX Mix</th>
<th>0.6</th>
<th>FX Width</th>
<th>0.7</th>
<th>*ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rvb Time</td>
<td>1.0</td>
<td>Low Rt</td>
<td>1.1</td>
<td>Mid Rt</td>
<td>1.2</td>
<td>Crossover</td>
<td>1.3</td>
<td>Rt HC</td>
<td>1.4</td>
<td>Pre Delay</td>
<td>1.5</td>
<td>*Ref Lvl/Dly</td>
<td>1.6</td>
<td>*Pst/Gld</td>
<td></td>
</tr>
</tbody>
</table>

Plate

<table>
<thead>
<tr>
<th>Controls</th>
<th>Mix</th>
<th>0.1</th>
<th>FX Adjust</th>
<th>0.2</th>
<th>*InLv/Pan</th>
<th>0.3</th>
<th>High Cut</th>
<th>0.4</th>
<th>Voice Diff</th>
<th>0.5</th>
<th>FX Mix</th>
<th>0.6</th>
<th>FX Width</th>
<th>0.7</th>
<th>*ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rvb Time</td>
<td>1.0</td>
<td>Low Rt</td>
<td>1.1</td>
<td>Mid Rt</td>
<td>1.2</td>
<td>Crossover</td>
<td>1.3</td>
<td>Rt HC</td>
<td>1.4</td>
<td>Pre Delay</td>
<td>1.5</td>
<td>*Ref Lvl/Dly</td>
<td>1.6</td>
<td>*EkoFbk/Dly</td>
<td>1.7</td>
</tr>
</tbody>
</table>

M-Band+Rvb

<table>
<thead>
<tr>
<th>Controls</th>
<th>Mix</th>
<th>0.1</th>
<th>FX Adjust</th>
<th>0.2</th>
<th>*InLv/Pan</th>
<th>0.3</th>
<th>High Cut</th>
<th>0.4</th>
<th>Voice Diff</th>
<th>0.5</th>
<th>FX Mix</th>
<th>0.6</th>
<th>FX Width</th>
<th>0.7</th>
<th>*ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rvb Time</td>
<td>1.0</td>
<td>Low Rt</td>
<td>1.1</td>
<td>Mid Rt</td>
<td>1.2</td>
<td>Crossover</td>
<td>1.3</td>
<td>Rt HC</td>
<td>1.4</td>
<td>Pre Delay</td>
<td>1.5</td>
<td>*Ref Lvl/Dly</td>
<td>1.6</td>
<td>*EkoFbk/Dly</td>
<td></td>
</tr>
</tbody>
</table>

Similar parameters can be found in similar positions in every effect matrix. Once you are familiar with one edit matrix, you will find it easy to anticipate where to find controls in another matrix.
Creating a Soft Row

In Pro mode you still have complete access to the Soft Row, which appears above row 0 of the full edit matrix. Parameters assigned here are duplicates of selected parameters in the matrix and can be adjusted from Row S (Soft Row), or from their matrix location.

The following example shows the edit matrix for the preset, P 0.0 Prime Blue (Chorus+Rvb algorithm). As you can see, parameters from locations throughout the matrix have been assigned to this Soft Row. In this preset (and in every preset) we have designed the Soft Row by assigning the parameters in numerical order, so that parameters from the Controls row are assigned in order to the first locations, followed by assignments from the Rvb Time row, and so on. As Soft Row parameters are also labeled with the name of the row from which they were taken, this makes it relatively easy to find the source parameter for any Soft Row assignment.

Modifying the Soft Row, or creating a completely new Soft Row for an effect is easy:

1. From the full Edit matrix, press Up until you get to the Soft Row, indicated by an S in the lower left corner of the display.

2. With any Soft Row parameter displayed, press and hold down the Edit button. The following display will appear briefly.

When you release the Edit button, the display will change to the Soft Row Assignment display shown below. The Edit button LED will begin flashing and will continue to flash as long as you are in Soft Row Assign.

3. Turn ADJUST to scroll through all of the available parameters in the Edit matrix row by row, in numerical order. The entry "available" can also be selected to indicate that no assignment has been made at that position.

4. Turn SELECT to display another Soft Row position (0-9) for assignment. For each position, you can choose any effect parameter, including one(s) you have already assigned to a Soft Row position.

5. When you have arranged the Soft Row assignments as you want them, press Edit to exit Soft Row Assign and return to your last position in the Edit matrix. Pressing Up or Down once will also cause you to exit Soft Row Assign. Another push of either of these buttons will move you vertically through the Edit matrix.

When you return to Go mode, you will see the parameters in the order you assigned them — the spaces from any unassigned row positions will not appear.
The Soft Row assigned to an effect appears above Row 0 in the full Edit Matrix.

<table>
<thead>
<tr>
<th>S (Soft Row)</th>
<th>Controls S.0 Mix</th>
<th>Controls S.1 High Cut</th>
<th>Controls S.2 FX Width</th>
<th>Rvb Time S.3 Mid Rt</th>
<th>Rvb Time S.4 RT HC</th>
<th>Rvb Time S.5 Pre Delay</th>
<th>Rvb Time S.6 Size</th>
<th>Chorus S.7 Mst Depth</th>
<th>Mod: LFO S.8 *Rate</th>
<th>Mod: Sw 1 S.9 *Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Controls</td>
<td>0.0 Mix</td>
<td>0.1 FX Adjust</td>
<td>0.2 *InLv/Pan</td>
<td>0.3 High Cut</td>
<td>0.4 FX Mix</td>
<td>0.5 FX Width</td>
<td>0.6 *ADJUST</td>
<td>0.7</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>1 Rvb Time</td>
<td>1.0 Low Rt</td>
<td>1.1 Mid Rt</td>
<td>1.2 Crossover</td>
<td>1.3 Rt HC</td>
<td>1.4 Pre Delay</td>
<td>1.5 *Ref Lv/Dly</td>
<td>1.6 *EndSpk/Dly</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>2 Rvb Design</td>
<td>2.0 Size</td>
<td>2.1 Diffusion</td>
<td>2.2 Attack</td>
<td>2.3 Spin</td>
<td>2.4 Link</td>
<td>2.5 Rvb Out</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>3 Levels</td>
<td>3.0 Master</td>
<td>3.1 Voice 1</td>
<td>3.2 Voice 2</td>
<td>3.3 Voice 3</td>
<td>3.4 Voice 4</td>
<td>3.5 Voice 5</td>
<td>3.6 Voice 6</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>4 Delay Time</td>
<td>4.0 *Master</td>
<td>4.1 Voice 1</td>
<td>4.2 Voice 2</td>
<td>4.3 Voice 3</td>
<td>4.4 Voice 4</td>
<td>4.5 Voice 5</td>
<td>4.6 Voice 6</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>5 Chorus</td>
<td>5.0 *Master</td>
<td>5.1 *Voice 1</td>
<td>5.2 *Voice 2</td>
<td>5.3 *Voice 3</td>
<td>5.4 *Voice 4</td>
<td>5.5 *Voice 5</td>
<td>5.6 *Voice 6</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>6 Feedback</td>
<td>6.0 Master</td>
<td>6.1 Voice 1</td>
<td>6.2 Voice 2</td>
<td>6.3 Voice 3</td>
<td>6.4 Voice 4</td>
<td>6.5 Voice 5</td>
<td>6.6 Voice 6</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>7 Panning</td>
<td>7.0 Master</td>
<td>7.1 Voice 1</td>
<td>7.2 Voice 2</td>
<td>7.3 Voice 3</td>
<td>7.4 Voice 4</td>
<td>7.5 Voice 5</td>
<td>7.6 Voice 6</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>8 Modulation</td>
<td>8.0 Mod LFO</td>
<td>8.1 Mod AR Env</td>
<td>8.2 Mod Envelop</td>
<td>8.3 Mod Env R</td>
<td>8.4 Mod Latch</td>
<td>8.5 Mod Sw 1</td>
<td>8.6 Mod Sw 2</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 0</td>
<td>Patch 1</td>
<td>Patch 2</td>
<td>Patch 3</td>
<td>Patch 4</td>
<td>Patch 5</td>
<td>Patch 6</td>
<td>Patch 7</td>
<td>Patch 8</td>
<td>Patch 9</td>
</tr>
</tbody>
</table>

We have highlighted those parameters in the Edit matrix which have been assigned to the Soft Row of P 0.0 Prime Blue. For example, FX Width, and Mod: SW 1.
PATCHING

Patching is the ability to assign a control (Source) to any PCM 81 parameter (Destination). This allows you to alter the value of the parameter by manipulating the control Source. For example, you can select the front panel ADJUST knob as a Source and an effect’s Mix parameter as a Destination. This simple patch will allow you to dynamically alter the mix of the effect whenever you turn ADJUST. You can create as many as 10 patches, each with as many as 8 pairs of pivot points. You can patch multiple parameters to a single controller, or patch multiple Sources to a single Destination.

About Sources

All Sources are the same in the sense that each generates an output value in the range of 0-127. The output value is used to increase or decrease the setting of a Destination parameter. Sources differ in the manner in which they generate an output. Some generate values continuously (they’re always “on”); some generate output based on the position of a particular external MIDI controller, or an external footpedal, or footswitch. Some Sources generate output based on aspects of physical performance such as how loud, how fast, or how hard you play. The PCM 81 allows you to choose from a selection of Sources as shown for each Destination. A list of the available Sources is shown on the following page.

The Patch Row

Each PCM 81 effect has an identical Patch row at the end of its Edit matrix where you can make as many as 10 patches.

<table>
<thead>
<tr>
<th>Patches</th>
<th>Patch 0</th>
<th>Patch 1</th>
<th>Patch 2</th>
<th>Patch 3</th>
<th>Patch 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patch 5</td>
<td>Patch 6</td>
<td>Patch 7</td>
<td>Patch 8</td>
<td>Patch 9</td>
</tr>
</tbody>
</table>

To make a patch, use SELECT and the Down button to move down through the Edit matrix to the Patch row. A display such as the following will appear.

Patches

An asterisk (✱) indicates that Sources will be selected when you turn ADJUST. Press Load/✱ to change the selection to Dst. Press Load/✱ again to bring up the Values display where you can select Src Value and Dst Value.

SELECT will move you across the Patch Row (0-9).

The current Source assignment name is shown here. (The default assignment is Int . . . Off.)

The Source type is indicated here. (Int, MIDI or 001-119 to indicate a MIDI Controller.)

Pressing the Load /✱ button will change the display to allow you to sequentially select: Src, Dst, Src Value and Dst Value. Press Up or Down together with Load/✱ to backstep to the previous parameter.

Assigning a Source

Three types of sources are available: Internal, MIDI and MIDI Controller. These types are indicated in the Source list by the labels: Int, MIDI, or a number (001-119). Turn ADJUST to scroll through the entire list of available sources.
Patch Sources

<table>
<thead>
<tr>
<th>Internal</th>
<th>MIDI Controller Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFO</td>
<td></td>
</tr>
<tr>
<td>Sine</td>
<td>(PCM 81 interprets 000 as</td>
</tr>
<tr>
<td>Cosine</td>
<td>Bank Select)</td>
</tr>
<tr>
<td>Square</td>
<td>001 Mod Wheel</td>
</tr>
<tr>
<td>Sawtooth</td>
<td>033 Ctrl 33</td>
</tr>
<tr>
<td>Pulse</td>
<td>002 Breath</td>
</tr>
<tr>
<td>Triangle</td>
<td>063 Ctrl 63</td>
</tr>
<tr>
<td>Env L</td>
<td>003 Ctrl 2</td>
</tr>
<tr>
<td>Env R</td>
<td>004 Foot Ctrl</td>
</tr>
<tr>
<td>AR Env</td>
<td>005 PortaTime</td>
</tr>
<tr>
<td>Latch</td>
<td>006 Data Entry</td>
</tr>
<tr>
<td>Sw 1</td>
<td>007 Volume</td>
</tr>
<tr>
<td></td>
<td>(PCM 81 interprets 032 as</td>
</tr>
<tr>
<td></td>
<td>Bank Select)</td>
</tr>
<tr>
<td></td>
<td>008 Balance</td>
</tr>
<tr>
<td></td>
<td>009 Ctrl 9</td>
</tr>
<tr>
<td></td>
<td>010 Pan</td>
</tr>
<tr>
<td></td>
<td>011 Xpression</td>
</tr>
<tr>
<td></td>
<td>(Bank Select)</td>
</tr>
<tr>
<td></td>
<td>012 Effect 1</td>
</tr>
<tr>
<td></td>
<td>013 Effect 2</td>
</tr>
<tr>
<td></td>
<td>014 Ctrl 14</td>
</tr>
<tr>
<td></td>
<td>015 Ctrl 15</td>
</tr>
<tr>
<td></td>
<td>016 General 1</td>
</tr>
<tr>
<td></td>
<td>017 General 2</td>
</tr>
<tr>
<td></td>
<td>018 General 3</td>
</tr>
<tr>
<td></td>
<td>019 General 4</td>
</tr>
<tr>
<td></td>
<td>020 Ctrl 20</td>
</tr>
<tr>
<td></td>
<td>021 Ctrl 31</td>
</tr>
<tr>
<td></td>
<td>031 Ctrl 31</td>
</tr>
</tbody>
</table>

MIDI

	P Bend	
	Low Note	
	A Touch	
	High Note	
	Velocity	
	Clk Comnds	
	Last Note	
		001 Mod Wheel
		033 Ctrl 33
		002 Breath
		063 Ctrl 63
		003 Ctrl 2
		004 Foot Ctrl
		064 Sustain
		005 PortaTime
		065 Porta On
		006 Data Entry
		066 Sostenuto
		007 Volume
		067 SoftPedal
		008 Balance
		068 Legato
		009 Ctrl 9
		069 Hold 2
		010 Pan
		070 Sound Var
		011 Xpression
		071 Timbre
		012 Effect 1
		072 Release
		013 Effect 2
		073 Attack
		014 Ctrl 14
		074 Bright
		015 Ctrl 15
		075 Sound 6
		016 General 1
		076 Sound 7
		017 General 2
		077 Sound 8
		018 General 3
		078 Sound 9
		019 General 4
		079 Sound 10
		020 Ctrl 20
		080 General 5
		021 Ctrl 31
		082 General 7

2-31
Assigning a Destination
Once you have selected a Source, press Load */[* and the display will change to allow you to assign a Destination (Dst).

An asterisk (✱) indicates that Destinations will be selected when you turn ADJUST. Press Load/✱ to bring up the Values display where you can assign Src Value and Dst Value. Press Load/✱ again to return to Source selection, etc.

Turn ADJUST to scroll through all of the parameters in the Edit matrix of the currently loaded effect, including the Modulation parameters.

Once you have assigned a parameter as a Destination, the controller you have assigned “owns” that parameter. Adjustments made to this parameter from the Edit matrix, will only affect the initial value of the parameter when the program is loaded.

The behavior of the parameter on program load is determined by the setting of the Patch Update parameter in Control mode (1.7). This parameter can be set to Immediate or Delayed.

When Immediate is selected, the initial value of the parameter value will correspond to the controller position.

When Delayed is selected, the stored value of the parameter will continue to be in effect until the controller is moved. (It is, therefore, a good idea to set a sensible value to the parameter in the Edit matrix.)

Mod Row Parameters that Can Be Assigned as Patch Destinations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFO</td>
<td>Rate, Shape, P Width, Depth</td>
</tr>
<tr>
<td>AR ENV</td>
<td>Attack, Release, Mode</td>
</tr>
<tr>
<td>Env L</td>
<td>Release</td>
</tr>
<tr>
<td>Env R</td>
<td>Release</td>
</tr>
<tr>
<td>Sw 1</td>
<td>Rate, P Width, Mode</td>
</tr>
<tr>
<td>Sw 2</td>
<td>Rate, P Width, Mode</td>
</tr>
</tbody>
</table>

Assigning Values
Once you have assigned a Destination, press Load /✱ to get to the Values display.

The current Dst value is displayed here. When you press Load/✱ again, the asterisk will move to indicate that this value is available to be changed by turning ADJUST.
This display allows you to assign Destination values to specific Source values. These assignments are made in pairs, each with a value for the Source and a value for the Destination. For example, the default is two pairs mapped as follows:
- minimum Src value (0) = minimum Dst value
- maximum Src value (127) = maximum Dst value

This establishes a linear relationship between the parameter and the controller. Inverse control is accomplished easily by reversing these settings. As many as eight pairs of Destination/Source values, or pivot points, can be assigned here, providing an exciting new level of dynamic control.

Jump
When creating patches, there are situations in which you will want to leave the Patch row to adjust parameters. To make this convenient, a Jump command is available. Jumping is dependent on the current Patch display, and is activated simply by pressing Edit while a certain display is active. This will jump you out of the Patch row and to the location where you can make the necessary adjustments. Pressing Edit again will jump you back to the Patch row. (Note that using any front panel controls other than those required to adjust the parameter to which you have jumped, will disable the jump. This is not catastrophic, but it will require you to return by using Up and Down and SELECT.)

The following Jumps are available:

From the Patch Row Src Display:
- With ADJUST selected as the Source, press Edit to jump to the Controls row, where you can specify range limits for the ADJUST knob. Press Edit again to return to the Patch row.
- With any modulation parameter selected as a Source, press Edit to jump to the Modulation row position of the Source. For example, if the Patch source LFO is displayed, press Edit to jump to Modulation row position 0 (LFO) where you can edit any LFO parameter value. Press Edit again to return to the Patch row.

From the Patch Row Dst Selection Display:
- Press Edit to jump to the Edit controls for the parameter you have selected as the Destination. You will have complete access to all parameter controls, including any subparameters at that location. Press Edit again to return to the Patch row.

From the Patch Row Values Display:
- Press Edit to jump to the next Src or Dst value. Default values are 0...minimum, 127...maximum.

Patching Examples
The following examples illustrate how to create a patch, use the patch jump features, modify the default patch values and add an additional pivot point to the example patch values.

Creating a Patch with Default Values
Load program P0 0.1 EkoChorus. Press Edit to enter Edit mode, then press Up to move to the Patch Row. Press Load/* until the display looks like this:

Patch 0 * Src
Int ADJUST
Basic Operation

Turn SELECT to select Patch 1 (which is set to Off).

![Patch 1 Src Int Off](image1)

The FX Width parameter is now assigned as the patch Destination.

![Patch 1 Dst FX Width](image2)

Now, press Load/✱ to bring up the Values display. This will show the default Destination value setting (–360 MONO). This is the value assigned to FX Width when the LFO is at its minimum value (000).

![Patch 1 Values -360 Mono](image3)

Turning ADJUST will scroll through the entire list of available patch Sources. Turn ADJUST counterclockwise until LFO is displayed in the lower right.

![Patch 1 Src Int LFO](image4)

The LFO is now assigned as a patch Source.

Press Load/✱ to bring up patch Destinations for selection. The display should show that Destination is unassigned.

![Patch 1 Dst Unassigned](image5)

The ADJUST knob will now scroll through all of the available parameters of EkoChorus. The lower line of the display will show the edit matrix row label on the left, and the parameters in that row on the right.

![Patch 1 Values](image6)

Turn ADJUST one click counterclockwise to display the default Destination value (+360 MONO) assigned to FX Width when the LFO is at its maximum value (127).

![Patch 1 Values +360 Mono](image7)

That’s all there is to setting up a default patch - select a Source and Destination, and the minimum and maximum patch values are set automatically. Of course, you will often want to modify the patch further, either by adjusting the modulation source parameters, changing the default values or adding additional pivot points. In the following sections, we’ll continue using this patch to show examples of these modifications. When we’re done, the new patch will add dynamic spatialization to the EkoChorus program.
Adjusting the Modulation Source Parameters
Continuing the previous example, we’ll adjust the rate of the LFO by jumping to it from the Patch row.

Press Load/✱ repeatedly to return to the Patch 1 Source selection display.

Press Edit to jump directly to the LFO parameters in the Mod row.

The asterisk (✱) indicates that LFO Rate will be altered when you turn ADJUST. Press Load/✱ to change the selection to the other LFO parameters (Shape, P Width, and Depth).

The display now shows position 8.0 in the Edit matrix Mod Row. The small square in the upper left corner of the display is a patch source indicator. This indicator appears whenever a modulator (such as the LFO in this example) has been assigned as a patch Source in the effect being edited.

Turn ADJUST to change the LFO rate to 0.10Hz.

Now, press Edit to jump back to your previous position in the Patch row.

Changing the Default Destination Values
Let’s modify the patch further by adjusting the Destination values to a more useful range.

Press Load/✱ repeatedly until the Patch 1 Values screen is displayed.

Notice that the ✱ is to the left of the Source value. This indicates that the Source value is selected and its value will be changed when you turn ADJUST.
Basic Operation

Press Load/* once to move the * to the right of the Source value. When the * is in this position, ADJUST will change the Destination value.

Note that the * remains in the same position, so you can just turn ADJUST to set the new Destination value. Set the value to +90.

Now our example has been modified so that the LFO sweeps the FX Width Value from 0 to 90. This creates a dynamic alteration of the effect’s spatial characteristics. Its stereo image changes smoothly from mono to stereo, to surround, and back again.

Adding an Additional Pivot Point to the Patch

So far, our example uses only two pairs of patch values. The Destination parameter moves linearly between the value assigned at 000 and the value assigned at 127.

You can watch this change by displaying the Destination parameter. Here’s how to jump directly to it from the patch:

Press Load/* repeatedly to return to the Patch 1 Destination selection display.

With the Destination value selected, turn ADJUST clockwise to set the value to +0.

Next, we’ll want to adjust the Destination value when the LFO is at its maximum value. One way to do this is to press Load/* three times to cycle the * to the display of the Source value, and continue on from there — but we’ve provided a short cut! Press Edit to jump to the next assigned value (in our example, the LFO maximum value).

Patch 1 Values
000: * -360 MONO

Patch 1 Values
000: -360 MONO

Patch 1 Values
000: * -360 MONO

Patch 1 Values
127: * +360 Mono

Patch 1 Values
127: * 000: -360 MONO

Patch 1 Values
127: * 000: +0 Mono

Patch 1 Values
127: * +360 Mono

Patch 1 Values
127: * 127: +90 L-R, R-L

Patch 1 Values
127: * 127: +90 L-R, R-L
Press Edit to jump directly to the FX Width parameter in the Controls Row.

The display will change to show position 0.5 in the Controls Row. Note that the value is changing continuously from 0 to 90 and back again. Notice also the small square in the upper right corner of the display. This patch destination indicator appears whenever a parameter has been assigned as a patch Destination in the effect being edited.

Now let’s return to the Patch row to add a pivot point to the effect.

Press Edit to jump back to the Patch row.

Press Load/✱ to bring up the Values display. The last value edited will be displayed, so you will see either the minimum or maximum value.

If the ✱ is not at the left of the Source value, press Load/✱ three times to move it there. (You can take a short cut instead — simultaneously press Down and Load/✱ to back-step.)

Turn ADJUST to display 64. This will be the Source value of our new pivot point. The string of dots in the destination value portion of the display indicate that there is no Destination value assigned when the source value is 64.

Press Load/✱ to move the ✱ to the right of the Source value, and turn ADJUST clockwise to set the Destination value for this point to –45.
By adding this pivot point, we have put a “kink” in the patch. The value of the Destination parameter no longer moves in a straight line between 0 and 90. Instead it moves from 0 to –45, and then from –45 to 90. This will produce a very different sounding spatial change from the original patch. You can see the difference by pressing Load/* twice to display the patch Destination, then pressing Edit to jump back to the Destination parameter to watch its value change.

Multiple Patches with the Same Destination

If you create two or more patches with the same Destination, the Destination value will be the sum of all of the patches assigned to it.

For example, if Pedal and ADJUST are both assigned to Mix, the Mix value will be the sum of the patch Destination values for those two patches. When creating multiple patches to the same Destination, you should set the individual Destinations to values which, when added together, are less than or equal to the maximum value for the parameter. Pedal and ADJUST, for example, could each have a maximum value of 50%, or they could be assigned values of 25% and 75%, 60% and 40%, etc.

When the sum of multiple patched parameter Destination values is greater than the maximum value of the parameter, the parameter value will remain at maximum until the sum of the patches falls below it.

Mod Row Patches

AR ENV, Latch, Sw 1 and Sw 2 are each activated by assigning a threshold source to T Src that is used to turn them on and off. This assignment is a subparameter in the Mod row — not in the Patch row.

For an example, check out ADJUST and Latch in the preset P0 3.1 Rotor Cabinet.
About the Algorithms..3-2

The 4-Voice Algorithms ..3-2
 Concert Hall • Plate • Chamber • Inverse • Infinite

The 6-Voice Algorithms ..3-9
 Glide>Hall • Chorus+Rvb • M-Band+Rvb

The Resonant Chord Algorithms ..3-13
 Res1>Plate and Res2>Plate

The Parameters ..3-15
 Chorus • Controls • Delay Time • Feedback/Cross Feedback • Filters • Glide FX •
 Levels • Modulation • Panning • Patching • Pitch • Resonance • Rvb Design •
 Rvb Time

The Pitch Algorithms..3-33
 About the Pitch Algorithms • About Pitch Shifting • Quad>Hall • Dual-Chamb •
 Dual-Plt • Dual-Inv • Stereo-Chmb • VSO-Chmb • The Pitch Parameters

Using the Submixer ...3-45
 Sends • Returns • Routing • Useful Configurations

Rvb and FX Block Controls ...3-52

The Pitch Correct Algorithm ..3-54
 The Pitch Correct Parameters
The PCM 81 uses 17 algorithms to create different types of effects. Each algorithm includes an uncompromised stereo reverb effect, as well as several voices of additional stereo effects. When you select any effect, the name of the algorithm from which it was derived will appear on the upper display line. Pressing Edit will display the last edited parameter in that algorithm’s parameter matrix.

The algorithm name appears on the upper line of the display whenever an effect is selected.

There are three general classes of algorithm: 4-Voice, 6-Voice and Pitch. The 4-Voice algorithms: Concert Hall, Plate, Chamber, Inverse and Infinite each combine a specific type of reverb with a 4-voice, general purpose stereo "effect toolbox" which we call the Reverb Shell. These algorithms also provide "post-processing" for the reverb. The 6-Voice algorithms: Glide Hall, Chorus + Rvb, M-Band + Rvb, Res 1 > Plate, and Res 2 > Plate each combine a specific type of reverb with a specialized 6-voice stereo effect. The Pitch algorithms: Quad > Hall, Dual-Chmb, Dual-Plt, Dual-Inv, Stereo-Chmb, VSO-Chmb and Pitch Correct each offer a unique type of pitch shifting, combined with an uncompromised Lexicon reverb.

In this chapter, diagrams and descriptions of the Reverb Shell, and of the 4 and 6-Voice algorithms are presented first, along with pictures of each edit matrix. The diagrams are followed by a glossary of parameter descriptions, organized alphabetically by matrix row name. Within each matrix row, parameters are organized as far as possible in the sequence in which they appear in the row. The Pitch algorithms, most of which make use of a dedicated Submixer incorporated into each algorithm, are described in the following section along with operational tips on pitch shifting in general and the submixer in particular.

THE 4-VOICE ALGORITHMS

Each of the 4-Voice algorithms share a common set of controls and parameters built around one of five stereo reverb effects: Concert Hall, Plate, Chamber, Inverse and Infinite. The diagram below shows these common controls and parameters as they are structured around a reverb effect. We call this structure the Reverb Shell. (Individual reverb effects are described on the following pages.)
In the 4-Voice algorithms, input levels and pans determine the signal flow to left and right pairs of delay voices, and also to the reverb effect. Each delay voice has individually adjustable level, delay, feedback, and pan controls, as well as master controls for all of the voices. These algorithms can be used to create a wide variety of stereo delay and modulation effects in parallel with studio quality stereo reverberation.

The two delays after the reverb effect are referred to as post delays. The PstDly Mix control determines how much post delay is actually heard. The Rvb Width control affects only the output of the reverb portion of the effect.

The delays and the output of the reverb effect are summed at the FX Mix control. This control allows you to blend the relative amounts of delay and reverb.

FX Width controls the spatial characteristics of the composite reverb and delay effect.

The Hi-Cut parameter provides high end rolloff, while FX Adjust determines the output volume of the entire processed signal.
CONCERT HALL

This algorithm emulates a real concert hall. The reverberation is very clean, and designed to remain behind the direct sound — adding ambience, but leaving the source unchanged. This effect has a relatively low initial echo density which builds up gradually over time.
PLATE
The Plate algorithm mimics the sound of metal plates, with high initial diffusion and a relatively bright sound. This makes them a good choice for enhancing any type of percussion.
CHAMBER

The Chamber algorithm produces an even, relatively dimensionless reverberation, with little change in color as the sound decays. The initial diffusion is similar to the Concert Hall algorithm, but the sense of space and size is much less obvious. This characteristic, along with the low color in the decay tail makes Chamber useful on a wide range of material. It is especially useful on spoken voice, giving a noticeable increase in loudness with very low color.
INVERSE

The Inverse algorithm allows you to vary the slope of the initial portion of the reverb envelope. The slope can decay, remain level, or rise over a variable time interval. When the time interval is up, the reverberation cuts off abruptly. The resulting effect is similar to a gate, but is not at all dependent on the level or complexity of the input signal. Slopes are adjustable over a negative, even, or positive slope. Positive slopes create inverse effects, while more even slopes create gated effects. Negative slope values have rather natural reverb tails.
INFINITE

Infinite is acoustically similar to the Chamber algorithm, with the addition of an Infinite parameter. When this parameter is turned on, the input to the reverberator ramps off. (Note that this still allows the Reverb Shell to be utilized.) With Infinite on, the reverb tail remains constant, creating strange and useful reverb effects. When Infinite is switched off, input to the reverberator is restored, and the current running reverb time is utilized.
THE 6-VOICE ALGORITHMS

Each 6-Voice algorithm is a combination of a specific 6-voice stereo effect and a specific reverb effect. These algorithms: Glide>Hall, Chorus+Rvb, M-Band+Rvb, Res1>Plate and Res2>Plate are each optimized for a particular class of audio processing effects in combination with studio quality stereo reverberation, bringing formidable processing power and flexibility to effects creation.

The 6-Voice algorithms use the same, uncompromised, stereo reverberation effects as the 4-Voice algorithms but, instead of the general-purpose Reverb Shell, each reverb is coupled with a unique 6-voice stereo effect: gliding delays, 6-voice chorus, multi-band EQ, and two 6-voice resonators. Voices 1-3 are connected to input audio panned to the left. Voices 4-6 are connected to input audio panned to the right. (Use the InPan L and InPan R controls at Control mode 0.2 to pan input audio.) Each voice has independent delay time, panning and level controls, in addition to other parameters specific to the particular effect.

In the Glide>Hall, Res1>Plate and Res2>Plate algorithms, the reverb effect is in series with the 6-voice effect. Use FX Mix to set the relative level of dry and reverberated effect.

In the M-Band+Rvb and the Chorus+Rvb algorithms, the reverb effect is in parallel with the 6-voice effect. Use FX Mix to set the balance of the 6-voice effect and the reverb.
GLIDE>HALL

A stereo pair of 2-tap gliding delays feeds six individually adjustable delay voices. Each voice has its own level, feedback, delay, cross-feedback, and pan parameters. The output of these delay voices is fed into a Concert Hall reverb algorithm. Glide>Hall is useful for creating such effects as stereo flangers, loop samplers, pitch modulation, etc. which can then be fed into the reverb.
CHORUS+RVB

The Chorus effect has six separately adjustable voices — allowing the PCM 81 to sound like a rack of six digital delay boxes. Each voice has its own independently adjustable chorus depth and rate, level control, delay time, feedback and panning control. The 6-voice chorus is in parallel with a plate algorithm, providing two independent stereo effects.

Note that the Diffusion parameter (Rvb Design 2.1) is shared by both the reverb and the chorus effect.

<table>
<thead>
<tr>
<th>Controls</th>
<th>0.0 Mix</th>
<th>0.1 FX Adjust</th>
<th>0.2 *InLvl/Pan</th>
<th>0.3 High Cut</th>
<th>0.4 FX Mix</th>
<th>0.5 FX Width</th>
<th>0.6 *ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rvb Time</td>
<td>1.0 Low Rt</td>
<td>1.1 Mid Rt</td>
<td>1.2 Crossover</td>
<td>1.3 Rt HC</td>
<td>1.4 Pre Delay</td>
<td>1.5 *Ref Lvl/Dly</td>
<td>1.6 EkoFbk/Dly</td>
</tr>
<tr>
<td>Rvb Design</td>
<td>2.0 Size</td>
<td>2.1 Diffusion</td>
<td>2.2 Attack</td>
<td>2.3 Spin</td>
<td>2.4 Link</td>
<td>2.5 *Rvb Out</td>
<td></td>
</tr>
<tr>
<td>Levels</td>
<td>3.0 Master</td>
<td>3.1 Voice 1</td>
<td>3.2 Voice 2</td>
<td>3.3 Voice 3</td>
<td>3.4 Voice 4</td>
<td>3.5 Voice 5</td>
<td>3.6 Voice 6</td>
</tr>
<tr>
<td>Delay Time</td>
<td>4.0 Master</td>
<td>4.1 Voice 1</td>
<td>4.2 Voice 2</td>
<td>4.3 Voice 3</td>
<td>4.4 Voice 4</td>
<td>4.5 Voice 5</td>
<td>4.6 Voice 6</td>
</tr>
<tr>
<td>Chorus</td>
<td>5.0 Master</td>
<td>5.1 *Voice 1</td>
<td>5.2 *Voice 2</td>
<td>5.3 *Voice 3</td>
<td>5.4 *Voice 4</td>
<td>5.5 *Voice 5</td>
<td>5.6 *Voice 6</td>
</tr>
<tr>
<td>Panning</td>
<td>7.0 Master</td>
<td>7.1 *Voice 1</td>
<td>7.2 *Voice 2</td>
<td>7.3 *Voice 3</td>
<td>7.4 *Voice 4</td>
<td>7.5 *Voice 5</td>
<td>7.6 *Voice 6</td>
</tr>
<tr>
<td>Modulation</td>
<td>8.0 Mod LFO</td>
<td>8.1 Mod ART Env</td>
<td>8.2 Mod ENV L</td>
<td>8.3 Mod ENV R</td>
<td>8.4 Mod Latch</td>
<td>8.5 Mod Sw 1</td>
<td>8.6 Mod Sw 2</td>
</tr>
</tbody>
</table>

Patches Patch 0 Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6 Patch 7 Patch 8 Patch 9

![Diagram of PCM 81 Chorus and RVB effects](image-url)
M-BAND+RVB

This effect features six separately adjustable voices, each with its own level control, delay time, low and high frequency filters, feedback and pan controls. The multi-band effect is in parallel with a Chamber effect, providing independent stereo effects. Note that the Diffusion parameter (Rvb Design 2.1) is shared by both the multi-band and reverb effects. Note also that, in this particular algorithm, the diffuser is within the feedback paths of the multi-band voices. This allows you to create filtered echoes that grow more diffuse with each repeat, or to create effects with filtered echoes passing through the reverberator.
THE RESONANT CHORD

ALGORITHMS

RES1>PLATE AND RES2>PLATE

The Resonant Chord effects use impulsive energy at the inputs to excite six resonant voices (notes). The level, pitch, duration, and high-frequency cutoff of the overtones for each voice are separately controllable. Each voice can be panned independently. The voices resonate to some degree with any input, but the most effective excitation contains all frequencies, like percussion. Other instruments may give a quality of tonal ambience in which certain notes rise ethereally from the background. The output of the resonator is then fed into a stereo plate reverb effect.

The two algorithms differ in the way pitches are assigned to the resonators. In Res1>Plate, pitches are assigned to the six voices chromatically, in a round-robin. For example, if MIDI note numbers are used to assign pitch, the resonators will constantly be re-tuned to the pitches of the last six MIDI notes received. (This can produce an effect similar to playing a piano with the sustain pedal depressed.) In Res2>Plate, pitches are assigned to the six resonators diatonically, harmonized with the key, scale, and root of your choice. If MIDI note numbers are used to assign pitch, the resonators will constantly be re-tuned to harmonize with the incoming notes.

... continued on page 3-14
Res1>Plate

<table>
<thead>
<tr>
<th>5 Controls</th>
<th>0.0 Mix</th>
<th>0.1 Mix</th>
<th>0.2 *InLv/Pan</th>
<th>0.3 FX Mix</th>
<th>0.4 FX Width</th>
<th>0.5 *ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rvb Time</td>
<td>1.0 Low Rt</td>
<td>1.1 Mid Rt</td>
<td>1.2 Crossover</td>
<td>1.3 Rt HC</td>
<td>1.4 Pre Delay</td>
<td>1.5 *Ref Lv/Dly</td>
</tr>
<tr>
<td>2 Rvb Design</td>
<td>2.0 Size</td>
<td>2.1 Diffusion</td>
<td>2.2 Attack</td>
<td>2.3 Spin</td>
<td>2.4 Link</td>
<td>2.5 *Rvb In/Out</td>
</tr>
<tr>
<td>3 Levels</td>
<td>3.0 *Master</td>
<td>3.1 *Voice 1</td>
<td>3.2 *Voice 2</td>
<td>3.3 *Voice 3</td>
<td>3.4 *Voice 4</td>
<td>3.5 *Voice 5</td>
</tr>
<tr>
<td>4 Delay Time</td>
<td>4.0 *Master</td>
<td>4.1 *Voice 1</td>
<td>4.2 *Voice 2</td>
<td>4.3 *Voice 3</td>
<td>4.4 *Voice 4</td>
<td>4.5 *Voice 5</td>
</tr>
<tr>
<td>5 Resonance</td>
<td>5.0 *MstrResHC</td>
<td>5.1 *Voice 1</td>
<td>5.2 *Voice 2</td>
<td>5.3 *Voice 3</td>
<td>5.4 *Voice 4</td>
<td>5.5 *Voice 5</td>
</tr>
<tr>
<td>6 Pitch</td>
<td>6.0 *Assign</td>
<td>6.1 Tuning</td>
<td>6.2 Active</td>
<td>6.3 Unison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Panning</td>
<td>7.0 *Master</td>
<td>7.1 Voice 1</td>
<td>7.2 Voice 2</td>
<td>7.3 Voice 3</td>
<td>7.4 Voice 4</td>
<td>7.5 Voice 5</td>
</tr>
<tr>
<td>8 Modulation</td>
<td>8.0 *Mod LFO</td>
<td>8.1 *Mod AR Env</td>
<td>8.2 *Mod Env L</td>
<td>8.3 *Mod Env R</td>
<td>8.4 *Mod Latch</td>
<td>8.5 *Mod Sw 1</td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 0</td>
<td>Patch 1</td>
<td>Patch 2</td>
<td>Patch 3</td>
<td>Patch 4</td>
<td>Patch 5</td>
</tr>
</tbody>
</table>

Res2>Plate

<table>
<thead>
<tr>
<th>5 Controls</th>
<th>0.0 Mix</th>
<th>0.1 Mix</th>
<th>0.2 *InLv/Pan</th>
<th>0.3 FX Mix</th>
<th>0.4 FX Width</th>
<th>0.5 *ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rvb Time</td>
<td>1.0 Low Rt</td>
<td>1.1 Mid Rt</td>
<td>1.2 Crossover</td>
<td>1.3 Rt HC</td>
<td>1.4 Pre Delay</td>
<td>1.5 *Ref Lv/Dly</td>
</tr>
<tr>
<td>2 Rvb Design</td>
<td>2.0 Size</td>
<td>2.1 Diffusion</td>
<td>2.2 Attack</td>
<td>2.3 Spin</td>
<td>2.4 Link</td>
<td>2.5 *Rvb In/Out</td>
</tr>
<tr>
<td>3 Levels</td>
<td>3.0 *Master</td>
<td>3.1 *Voice 1</td>
<td>3.2 *Voice 2</td>
<td>3.3 *Voice 3</td>
<td>3.4 *Voice 4</td>
<td>3.5 *Voice 5</td>
</tr>
<tr>
<td>4 Delay Time</td>
<td>4.0 *Master</td>
<td>4.1 *Voice 1</td>
<td>4.2 *Voice 2</td>
<td>4.3 *Voice 3</td>
<td>4.4 *Voice 4</td>
<td>4.5 *Voice 5</td>
</tr>
<tr>
<td>5 Resonance</td>
<td>5.0 *MstrResHC</td>
<td>5.1 *Voice 1</td>
<td>5.2 *Voice 2</td>
<td>5.3 *Voice 3</td>
<td>5.4 *Voice 4</td>
<td>5.5 *Voice 5</td>
</tr>
<tr>
<td>6 Pitch</td>
<td>6.0 *Assign</td>
<td>6.1 Tuning</td>
<td>6.2 Active</td>
<td>6.3 Unison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Panning</td>
<td>7.0 *Master</td>
<td>7.1 Voice 1</td>
<td>7.2 Voice 2</td>
<td>7.3 Voice 3</td>
<td>7.4 Voice 4</td>
<td>7.5 Voice 5</td>
</tr>
<tr>
<td>8 Modulation</td>
<td>8.0 *Mod LFO</td>
<td>8.1 *Mod AR Env</td>
<td>8.2 *Mod Env L</td>
<td>8.3 *Mod Env R</td>
<td>8.4 *Mod Latch</td>
<td>8.5 *Mod Sw 1</td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 0</td>
<td>Patch 1</td>
<td>Patch 2</td>
<td>Patch 3</td>
<td>Patch 4</td>
<td>Patch 5</td>
</tr>
</tbody>
</table>
THE PARAMETERS

PCM 81 parameters are organized into labeled rows within each edit matrix. Although there are similarities among all matrixes, such as having a row of Controls first, and Modulation and Patching rows last, some of the parameters within each row, and some entire rows are unique to specific algorithms.

This section contains descriptions for all PCM 81 parameters, organized alphabetically by row label as follows:

- Chorus
- Controls
- Delay Time
- Feedback/Cross-Feedback
- Filters
- Glide FX
- Levels
- Modulation
- Panning
- Patching
- Pitch
- Resonance
- Rvb Design
- Rvb Time
- MstDepth and MstRate

Individual parameter descriptions within each row are presented, as far as possible, in the order in which they appear from left to right in the edit matrix.

CHORUS

In the Chorus+Rvb algorithm, Row 5 provides parameters which provide rate and depth controls for each of the six chorus voices, as well as master rate and depth controls.

MstDepth and MstRate

Two Master Chorus parameters in the first row position allow Chorus, Depth and Rate for all voices to be simultaneously scaled. Each control has a range of 0-200%. Press Load/✱ to toggle between MstDepth and MstRate.

Voices (Depth and Rate)

Each voice position has Depth and Rate controls to set the time range (delay) and rate of change across that time range (pitch) of the chorusing effect. (Press Load/✱ to toggle between them.)

Depth provides settings of 0-500ms in single millisecond increments. Rate parameter can be set to 0Hz (Off), or to one of one-hundred selections from 0.01-3.50Hz. Depths of 10-30ms combined with Rates as high as 0.50Hz provide subtle chorusing and multivoicing effects. Depths of hundreds of milliseconds combined with higher Rates provide a wide range of pitch shifting effects.

CONTROLS

Row 0 of every algorithm contains parameters that provide overall control of both the reverb and voice effects.

Mix

Mix controls the ratio of dry and wet signal present at the PCM 81 outputs. When the PCM 81 is patched into a console or an instrument amplifier through an auxiliary or effects loop, this control should always be set to 100% wet. (Control Mode 1.1 allows you to select a global Mix setting.) When an instrument is plugged directly into the PCM 81, a setting between 45 and 65% is a good starting point.

... continued on page 3-16
CONTROLS (continued)

FX Adjust
FX Adjust controls the level of the processed (wet) signal before it is mixed with the dry signal (if any) and sent to the audio outputs. The range of this parameter is +12dB to -73dB, and Off (wet output muted.) FX Adjust is inactive when the PCM 81 is in Bypass mode, so it is a good idea to compare the levels with Bypass on and off while editing this parameter. Adjust it until the audio level sounds the same with bypass on and off.

InLvl L&R, InPan L&R
InLvl L and InLvl R control the level and phase of the unprocessed dry signal into the effects. The range of these parameters is from Full (0dB) Phase Normal, to -85dB Phase Normal, Off, -85dB Phase Inverted to Full (0dB) Phase Inverted.

InPan L and InPan R control the location of the left and right input audio as a stereo image to the effect's audio input. Unmodified stereo imaging to the effects can be achieved by setting InPan L hard left (50L) and InPan R hard right (50R). Changing InPanL to any other value (49L to 50R), takes the left audio input and presents it as a panned source to the effect's left and right input. Changing InPan R to any value other than 50R, does the same for the right audio input.

High Cut
High Cut sets the high frequency cutoff of a low-pass filter. This parameter affects both channels.

Voice Dif
This parameter is available in all of the 4-Voice Algorithms, and in Glide>Hall. It controls the density of echoes in the delay voices, independently of Reverb diffusion. High levels of diffusion thicken, or smear, the echoes. This is most noticeable on material with sharp transients.

FX Mix
FX Mix controls the balance of reverb and non-reverb effects. (Non-reverb effects are those processed as "voices" controlled by level, delay and feedback parameters generally found in rows 3-7.) The range of this control is 0 to 100%.

FX Width
FX Width can be thought of as an extension of typical mono to stereo imaging controls. The range of this parameter is -360 to +360, in single digit increments. Values of -360, 0, or +360 cause the effect's audio output to be mono. Values of -315 and +45 cause the output to be normal left/right stereo. Values of -45 and +315 cause "swapped", or right/left stereo.

The large and duplicated range of this parameter allows smooth glides from any Left/Right Mix, Phase, Mono/Stereo image point to any other. These are on the output of the FX Mix. Of particular interest are: 0 MONO, 45 STEREO, and 90 L–R, R–L (surround channel). This parameter can be changed in real-time for fascinating spatial effects.
In each algorithm, the Delay Time row contains parameters for delay settings of each voice, as well as master delay parameters for all voices.

Press Load/✱ to cycle through selections: Master, GldResp, GldRange and Clear.

Master

This control allows you to simultaneously change the delay times of all voices in the effect. The available range is from 0-200%. This provides a simple way to expand or close in all of the voice delay times. If a voice's delay time is set to 500ms, changing the setting of the Master parameter to 200% will change the delay time to 1000ms. Setting this parameter to 0% is an easy way to set all the delays to 0 from a single control.

GldResp

In all of the 4-Voice algorithms, and in the Chorus+Rvb algorithm, this parameter controls the response of the glide. The range is 0-100, with a typical default setting of 50. This setting provides a good, real-time glide. Changing a delay time from 0 to 100ms with a glide response of 0, causes the glide delays to take a minute or more, allowing subtle changes in delay times and echoes with no noticeable pitch shifting. A glide response of 100 is ultrafast, causing high speed pitch shift, and even chirping effects with large delay time changes.

<table>
<thead>
<tr>
<th>Value</th>
<th>Display Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>MONO</td>
<td>Phase Normal Mono</td>
</tr>
<tr>
<td>315</td>
<td>R, L</td>
<td>Phase Normal R/L stereo</td>
</tr>
<tr>
<td>225</td>
<td>STEREO INV</td>
<td>Phase Inverted L/R Stereo</td>
</tr>
<tr>
<td>180</td>
<td>MONO INV</td>
<td>Phase Inverted Mono</td>
</tr>
<tr>
<td>135</td>
<td>R, L INV</td>
<td>Phase Inverted R/L Stereo</td>
</tr>
<tr>
<td>45</td>
<td>STEREO</td>
<td>Phase Normal L/R stereo</td>
</tr>
<tr>
<td>0</td>
<td>MONO</td>
<td>Phase Normal Mono</td>
</tr>
<tr>
<td>-45</td>
<td>R, L</td>
<td>Phase Normal R/L Stereo</td>
</tr>
<tr>
<td>-135</td>
<td>STEREO INV</td>
<td>Phase Inverted L/R Stereo</td>
</tr>
<tr>
<td>-180</td>
<td>MONO INV</td>
<td>Phase Inverted Mono</td>
</tr>
<tr>
<td>-225</td>
<td>R, L INV</td>
<td>Phase Inverted R/L Stereo</td>
</tr>
<tr>
<td>-315</td>
<td>STEREO</td>
<td>Phase Normal L/R Stereo</td>
</tr>
<tr>
<td>-360</td>
<td>MONO</td>
<td>Phase Normal Mono</td>
</tr>
</tbody>
</table>

ADJUST

This control allows you to specify the range of control of the ADJUST knob when it is patched to a parameter. Low and High settings are available, allowing you to select full range (0-127) for those parameters where it is appropriate and to limit the range in other cases. You can, for example set the Low value to 0, and the High value to 1, to have ADJUST behave as an on/off control. Many of the presets take advantage of this, and have ADJUST range limits which are appropriate to the specific parameter.

... continued on page 3-18
ALGORITHMS AND PARAMETERS

DELAY TIME (continued)

GldRange
In all of the 4-Voice algorithms, and in the Chorus+Rvb algorithm, this parameter controls the range over which changes to the voice delay time will be performed as a glide. For example, if GldRange is set to 100ms, and the PstDly L and R times are varied over a range of 100ms, those delays will glide smoothly from one delay time to another. Suddenly changing the delay time to a greater value, such as 200ms, will cause the audio delay to change instantly to the new time without gliding. The available range is 0-1.365 sec, with 0 causing all delay time changes to be "instantaneous", and 1.365 causing all delay time changes to glide.

Clear
This is an On/Off control which allows you to instantly clear all of the audio in the delay voices. A typical use for this control might be to patch it to a footswitch to allow one tap removal of all old audio from the delays to start fresh. While Clear is on, no new audio will pass through any delay voice set above 1 ms.

Voices
These parameters set the delay time, in seconds, for each individual voice. The range for each algorithm is shown in the table that begins at the top of the next column.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Delay Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concert Hall</td>
<td>0-1.365 sec</td>
</tr>
<tr>
<td>Plate</td>
<td>0-1.365 sec</td>
</tr>
<tr>
<td>Chamber</td>
<td>0-1.365 sec</td>
</tr>
<tr>
<td>Inverse</td>
<td>0-1.365 sec</td>
</tr>
<tr>
<td>Infinite</td>
<td>0-1.365 sec</td>
</tr>
<tr>
<td>Glide>Hall</td>
<td>0-10.581 sec</td>
</tr>
<tr>
<td>Chorus+Rvb</td>
<td>0-1.365 sec</td>
</tr>
<tr>
<td>M-Band+Rvb</td>
<td>0-10.922 sec</td>
</tr>
<tr>
<td>Res 1>Plate</td>
<td>0-9.557 sec</td>
</tr>
<tr>
<td>Res 2>Plate</td>
<td>0-9.557 sec</td>
</tr>
</tbody>
</table>

When display of values in BPM has been selected, these are set as fractions of a beat. The smallest fraction is 1/24th beat. Changing these values live can produce a variety of pitch shift, and flange effects. Delay times can also be tempo modulated.

You can set and display delay values in units of time, or with tempo values. Press Up and Tempo simultaneously to toggle between these two options. When time units are selected, delay times are set and displayed in milliseconds (From 0ms to the maximum available delay for that parameter). When tempo values are selected, delay values are set and displayed as a ratio of echoes to beats (from 24:1 to 1:24). This will automatically synchronize the delay to the current tempo (MIDI, Internal, or TAP — see Tempo Mode in Chapter 2.) For example, a delay setting of 1:2 (1 echo for every 2 beats) will produce half-note delay rhythms synchronized to the current tempo.
FEEDBACK/CROSS FEEDBACK

Parameters in this row provide level and phase setting for feedback of individual voices, as well as a master feedback parameter for all voices. In the Glide>Hall algorithm, a duplicate set of parameters is included for cross-feedback.

Master

A Master Feedback control is available in effects with a feedback level control for each voice. It allows the feedback level for all voices to be simultaneously adjusted over a range of 0-100%.

Voices

In the 4-Voice algorithms, four voice controls are provided for adjustment of the level and polarity of signals recirculated back to the input of individual voices. Note that, as Voices 1 and 2 and Voices 3 and 4 are paired, caution should be observed not to create feedback within a pair which exceeds more than 100%.

In the Chorus+Rvb and M-Band+Rvb algorithms, six voice parameters control the feedback level of the voice delays. Voices 1, 2, and 3 Fbk control the individual voice feedback levels from the left channel voice delay outputs to the left channel delay feedback input. Voices 4, 5, and 6 Fbk control the individual voice feedback levels from the right channel voice delay outputs to the right channel delay feedback input. The range of these parameters is from +100% down to 1% (Phase Normal feedback), 0% (off), –1% up to –100% (Phase Inverted feedback).

In the Glide>Hall algorithm, the Feedback row provides both Feedback and Cross Feedback parameters as described below. Press Load/✱ at each row position to toggle between Feedback and Cross Feedback parameters.

Mstr Fbk, Mstr X-Fbk

These parameters allow the feedback and cross feedback levels for all voices to be simultaneously scaled over a range of 0-100%.

Voices 1-6 Fbk, X-Fbk

These parameters control the feedback and cross feedback levels and the polarity of the voice delays.

Voices 1, 2, and 3 Fbk control the individual voice feedback levels from the left channel voice delay outputs to the left channel delay feedback input.

Voices 1, 2, and 3 X-Fbk control the individual voice feedback levels from the left channel voice delay outputs to the right channel delay feedback input.

Voices 4, 5, and 6 Fbk control the individual voice feedback levels from the right channel voice delay outputs to the right channel delay feedback input.

Voices 4, 5, and 6 X-Fbk control the individual voice feedback levels from the right channel voice delay outputs to the left channel delay feedback input. The range of these parameters is from +100% down to 1% (Phase Normal feedback), 0% (off), –1% up to –100% (Phase Inverted feedback).

The sum of all Fbk and X-Fbk values for each channel should be less than 100%.
FILTERS
In the M-Band+Rvb algorithm, Row 5 contains parameters for cut-off frequencies of low and high cut filters for each voice, as well as master low and high cut controls for all voices.

Mstr LC/HC
Two master controls are provided in the first row position. Press Load/✱ to toggle between them. The High Cut Master allows simultaneous adjustment of the high frequency cut-off points for the filters on all voices in single semitone increments up or down from the individual voice settings. The Low Cut Master allows simultaneous adjustment of the low frequency cut-off points for the filters on all voices in single semitone increments up or down from the individual voice settings.

V1-V6 LoCut and HiCut
The low cut and high cut filters operate at 12dB/octave. Each of six voices has individual low cut and high cut filters. The ranges of the filter cut-off points are from 20-20,000Hz at approximately semitone intervals across the entire range for a total of 121 cut-off points. The low cut filters have an OFF position just below 20Hz. The high cut filters have an OFF position just above 20,000Hz.

GLIDE FX
In the Glide>Hall algorithm, Row 3 contains level, delay and feedback parameters for a pair of stereo gliding delays that preceded the 6-voice delay.

Gld Lvl
Gld Lvl controls the stereo output level from all gliding delays (A, B, Left and Right). It has a range of Full (0dB) down to -85dB and Off.

A Left (A Lvl L and A Dly L)
These parameters control the output level and delay time of the left channel A Glide Delay. A Lvl L has a range of Full (+0dB), Phase Normal down to -85dB, Phase Normal, OFF, -85dB Phase Inverted up to Full (+0dB), Phase Inverted. A Dly L has a range of 0.0 milliseconds to 42.0 milliseconds in 0.1 millisecond units.

A Right (A Lvl R and A Dly R)
These parameters control the output level and delay time of the right channel A Glide Delay. They have the same ranges as A Left.

B Left (B Lvl L and B Dly L)
These parameters control the output level and delay time of the left channel B Glide Delay. They have the same ranges as A Left.

B Right (B Lvl R and B Dly R)
These parameters control the output level and delay time of the right channel B Glide Delay. They have the same ranges as A Left.

Fbk L/R
These parameters control the feedback levels of the corresponding left and right channel Glide Delays. The range of these parameters is from +100% down to 1% (Phase Normal feedback), 0% (off), -1% up to –100% (Phase Inverted feedback).

X-Fbk L/R
These parameters control the corresponding cross feedback levels of the left and right channel glide delays. Specifically, X-Fbk L controls the feedback from the left channel A+B glide delay output to the right channel glide delay feedback input. X-Fbk R controls the feedback from the right channel A+B glide delay output to the
left channel glide delay feedback input. The range of these parameters is from +100% down to 1% (Phase Normal feedback), 0% (off), -1% up to –100% (Phase Inverted feedback).

LEVELS
In each algorithm, the Levels row contains parameters for the phase and level of each voice, as well as a master level parameter for all voices.

Master
The Master Level controls the overall level in effects which have more than one voice. This permits simultaneous changes in all voice levels without altering the balance between individual voices.

In the Res1>Plate and Res2>Plate algorithms, the Master parameter contains two master parameters for the six resonator voices: Mstr Lvl and Mstr Fbk. (Load/✱ will toggle between them.) Mstr Lvl is a master level control for all of the resonator voices, as described above. Use care when adjusting this value. The resonators will put out high levels if the input source has any components that are close in pitch to the resonator tunings. In general, this control should be set to a value less than Full.

The Mstr Fbk control allows the feedback levels for all voices to be scaled over a range of 0-100%.

Voices
Individual controls are provided for each Voice Level. Voices can be turned completely off, full on, or set to any point between, in 1dB increments. There are as many voice level controls as there are voices in an effect.

In the Res1>Plate and Res2>Plate algorithms, positions 1-6 contain both level and feedback parameters for each of the six resonator voices. (Load/✱ will toggle between them.) Lvl controls the individual level and polarity for each voice. Voices can be turned completely off, full on, or set to any point in between in 1dB increments. Use care when adjusting this value. The resonators will put out high levels if the input source has any components that are close in pitch to the resonator tunings. In general, this control should be set to a value less than Full.

The Fbk controls set the feedback level and polarity of each voice. Voices 1-3 Fbk control the feedback levels from the left channel delay voice outputs to the left channel delay voice inputs. Voices 4-6 Fbk control the feedback levels from the right channel delay voice outputs to the right channel delay voice inputs. The sum of the values for either side should be less than 100%. (Disregard the negative sign when adding values.)

MODULATION
The Modulation row, which is the same for every algorithm, contains the parameters for the PCM 81's internal modulation sources. Use the Patch row to assign these modulators to any PCM 81 effect parameter.

Mod: LFO
Four parameters are available: Shape, P Width, Depth, and Rate.

- Shape Allows you to select the wave shape that will be used when "LFO" is selected as a patch Source. The choices are: Sine, Cosine, Square, Sawtooth, Pulse, and Triangle.
MODULATION (continued)

- **P Width** Determines the proportion of each pulse wave cycle for which the LFO is on (1-99%). For example, setting P Width to 50% means that the LFO is on for half of its cycle. The effect of this control will only be heard if you are using the Pulse shape.

- **Depth** Scales the output of the LFO from 0 to 100%.

- **Rate** Sets the speed (0-25Hz) at which the LFO cycles. It can be set in time values (such as 1.5Hz) or in tempo values (such as 3:2 cycles per beat). Simultaneously pressing Up and Tempo will toggle these two display options.

The PCM 81 allows six LFO shapes (sine, cosine, sawtooth, triangle, square and pulse) to be selected as patch Sources, as well as the LFO itself. All of these are generated by a single LFO, and are controlled by the single Rate control. When "LFO" is selected as a patch Source, the output will be the Shape selected here. The amplitude of the LFO output is controlled by Depth. Both Shape and Depth are available as patch Destinations and can be controlled externally. Shape, Pulse Width, Depth, and Rate are all available as patch Destination parameters, and can be controlled externally. See Patching in Chapter 2.

Mod: AR Env

This envelope generator's output, when turned on, will go from 0 to 127. How quickly it goes from 0 to 127 is determined by the setting of Attack (0-10 seconds). Once the envelope generator has reached 127, it remains there as long as it is turned on. When it is turned off, it goes from 127 to 0, at the rate determined by Release (0 to 10 seconds).

- **T Src** allows you to select a Source to turn the envelope generator on and off. **T Lvl** allows you to select a specific threshold value which the T Src must reach to turn the envelope generator on.

The **Mode** parameter allows you to determine the behavior of the envelope controller in relation to the threshold value. Four settings are available: Repeat, One Shot, Retrigger, and Off.
• **Repeat** As long as the threshold source remains at or above T Lvl, the envelope cycles from attack to release. If A=R, the output of the envelope is a triangle wave.

• **One Shot** Once T Lvl is reached, the envelope will go through its entire attack cycle. Once the attack cycle is completed, if Source value is below T Lvl, the envelope will remain at 127 until the T Src falls.

• **Retrigger** As long as the level is at or above T Lvl, the envelope will go through its attack cycle. If the level falls below T Lvl before attack is completed, the envelope immediately begins to release. Likewise, if the T Lvl is crossed again before the release is completed, the attack cycle will begin again.

• **Off** This control turns the AR envelope off (and frees up processor time). To optimize PCM 81 real-time response, set AR Env to Off when it is not being used.

Mod: Latch

The latch is a very flexible modulation source. It can be used to do such things as derive a switch from a continuous “return to zero” source (like MIDI After Touch). It can turn a momentary (on/off) footswitch into a latching footswitch (push on/push off), and it can divide the switching rates of sources in half or thirds.

The latch has three parameters: Src, High and Low. Any patch source can be the Src (See Source listing under Patching.) High and Low are threshold values. The latch works as follows:

Mod: Env L and Mod: Env R

These are left and right input signal envelope followers. The only available parameter is Release which is set in milliseconds. This control allows you to specify the release rate (0-10 seconds) when the input level drops.

... continued on page 3-24
There is no output from the latch until the Src value falls within the range defined by the settings of High and Low. While the source value is between these thresholds, the output of the latch is the same value as the source. When the source value reaches or passes either threshold, the output of the latch holds at the limit value until the source value passes through the threshold twice. The latch can be set to hold at either the low threshold, the high threshold, or both. Setting Low to 0 disables latching at the low threshold. Setting High to 127 disables latching at the high threshold.

See preset P0 3.0 FSw2 Rotary as an example.

Mod: Sw 1 and Mod: Sw 2
These are identical time switches. Each has five parameters: Rate, P Width, Mode, T Lvl and T Src.

- **Rate**
 Sets the speed at which the switch cycles. It can be set in time values (such as 1.5 Hz) or tempo values (such as 3:2 Cycles per Beat). Simultaneously pressing Up and Tempo will toggle these display options.

- **P Width**
 Determines the proportion of each switch cycle during which the switch is on. For example, setting P Width to 50% means that the switch is on for one-half of a cycle.

- **Mode**
 Determines the “shape” of the switch output. Three settings are available: Switch, Ramp, and Off. When Switch is selected, the transition from on to off is instantaneous, i.e. the switch output resembles a pulse wave. When Ramp is selected, the transition from on to off is continuous, i.e. the switch output resembles a triangle or sawtooth wave.

- **Off**
 Turns the switch off (and frees up processor time). To optimize PCM 81 real-time response, set switch to Off when it is not being used.

- **T Lvl**
 Sets the threshold value at which the switch will begin to cycle.

- **T Src**
 Selects a patch source to drive the switch. The output of the switch is 0 as long as T Src is set to a value below T Lvl. Once the source value reaches or passes T Lvl, the switch will begin to cycle between on (127) and off (0) at the speed set by Rate.

Note that both Rate and P Width are available as patch Destinations, allowing them to be dynamically controlled by other patch sources. Switches are reset to the beginning of their cycles whenever Tap is pressed.

A special, composite output of these switches, called Sw 1&2 is available as a patch source. The value of Sw 1&2 alternates between the output of Sw 1 and the output of Sw 2. The alternation occurs on the transition from on to off. Note that both Sw 1 and Sw 2 must be active for the alternation to occur.
PANNING
Parameters in the Panning row provide control of panning of individual effects voices, as well as a master panning parameter for all voices.

Master
The Pan Master provides simultaneous control over the panning of all voices in the effect. The range of the Pan Master is 50L (full left) through L1, C (Center), 1R through 50R (full right) for a total of 101 positions. The Master Pan is additive to the individual voice panners such that, if a voice is set to L10, and the Master is set to 20R, the voice will be at 10R.

Voices
Individual pan controls are provided to position the output of each voice. The range of each voice is 50L (full left) through 1L, C (Center), 1R through 50R (full right) for a total of 101 positions.

PATCHING
The last row of each algorithm's edit matrix is the Patch row. This row provides parameters for creating up to 10 patches in each effect. Each row position (Patch 0-9) has three controls available: Src, Dst, and Values. Press Load/* to cycle among these selections.

Src
Use ADJUST to select any of the sources listed below.

Dst
Use ADJUST to select any parameter except those on the Patch row.
Patching (continued)

Values
Use ADJUST to assign Destination values to specific Source values. These assignments are made in pairs, each with a value for the Source and a value for the Destination. For example, the default is two pairs mapped as follows:

- minimum Source value (0) = minimum Destination value
- maximum Source value (127) = maximum Destination value

This gives you a linear relationship between the parameter and the controller. Inverse control is accomplished easily by reversing these settings. As many as eight pairs of Destination/Source values can be assigned here, providing an exciting new level of dynamic control.

See Chapter 2 for a complete description of the Patching System.

<table>
<thead>
<tr>
<th>Midi Controller Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PCM 81 interprets 000 as Bank Select)</td>
</tr>
<tr>
<td>017 General 2 071 Timbre 092 FX2 Depth</td>
</tr>
<tr>
<td>018 General 3 072 Release 093 FX3 Depth</td>
</tr>
<tr>
<td>019 General 4 073 Attack 094 FX4 Depth</td>
</tr>
<tr>
<td>020 Ctrl 20 074 Bright 095 FX5 Depth</td>
</tr>
<tr>
<td>003 Ctl 3 075 Sound 6 096 Data Inc</td>
</tr>
<tr>
<td>004 Foot Ctrl 076 Sound 7 097 Data Dec</td>
</tr>
<tr>
<td>005 PortaTime 077 Sound 8 098 NRPN LSB</td>
</tr>
<tr>
<td>006 Data Entry 078 Sound 9 099 NRPN MSB</td>
</tr>
<tr>
<td>007 Volume 079 Sound 10 100 RPN LSB</td>
</tr>
<tr>
<td>008 Balance 080 General 5 101 RPN MSB</td>
</tr>
<tr>
<td>010 Pan 081 General 6 102 Ctl 102</td>
</tr>
<tr>
<td>009 Ctl 9 082 General 7</td>
</tr>
<tr>
<td>011 Xpression 063 Ctrl 63 083 General 8 119 Ctl 119</td>
</tr>
<tr>
<td>012 Effect 1 066 Sostenuto 084 Porta Ctrl</td>
</tr>
<tr>
<td>013 Effect 2 067 SoftPedal 085 Ctrl 85</td>
</tr>
<tr>
<td>014 Ctl 14 068 Legato</td>
</tr>
<tr>
<td>015 Ctl 15 069 Hold 2 090 Ctl 90</td>
</tr>
<tr>
<td>016 General 1 070 Sound Var 091 FX1 Depth</td>
</tr>
</tbody>
</table>

Internal

LFO	Sw 2
Sine	Sw 1 & 2
Cosine	Mono Lvl
Square	Left Lvl
Sawtooth	Right Lvl
Pulse	Footpedal
Triangle	Foot Sw 1
Env L	Foot Sw 2
Env R	ADJUST
AR Env	Tempo
Latch	On
Sw 1	Off

MIDI

P Bend	Low Note
A Touch	High Note
Velocity	Clk Comnds
Last Note	
PITCH

The Resonant Chord algorithms: Res1>Plate and Res 2>Plate each have a Pitch row that contains the parameters for setting and controlling the tuning of the effect’s resonators. Each set of parameters is presented separately here.

Res 1>Plate Pitch Parameters

The voice resonators take the audio impulse from a delay voice and “resonate” it at a desired pitch. Until a resonator is assigned a pitch, it does not resonate. The Res1 effect is a “round robin” pitch assign in that pitch changes are individually assigned to one of (as many as) six voice resonators. For example, assume that all six voice resonators are active in the newly loaded effect, and the first pitch assigned is A4. Voice 1’s resonator will be set to the A4 frequency. Assign B4, and Voice 2’s resonator will be set to that pitch. In this example, if we assign four more pitches (D5, G4, A#:Bb4, C5, for example), they will be assigned to the Voice 3, 4, 5, and 6 resonators, respectively. If a seventh pitch is assigned, for example, F3, Voice 1’s resonator will be changed from A4 to F3 (the other resonators remain at the last assigned pitches).

Assign

This parameter has a range of C0 to G10 (128 pitches) to be convenient for MIDI patching. As the value of this parameter is changed, each “next value” is assigned to the next active pitch resonator of the six possible active resonators. An example might be driving this parameter with a slow LFO to achieve an effect something like strumming the strings of an open piano.

Active

This parameter allows you to define the number of active voice resonators. You can choose from 0 (no resonators active) to 6. Setting the value to 1 will limit pitch assignments to Voice 1’s resonator. Setting the value to 2 will limit the round robin pitch assign to Voices 1 and 2. A value of 6 uses all the voice resonators.

A handy feature of this parameter is the ability to mute resonators. For example, you can patch this parameter to a footswitch or pedal, allowing you to drive the parameter value down to 0 at any time, causing the resonators to stop playing their last assigned pitches. You can then immediately drive it back up to the desired number of active resonators. This “clears” the pitch assign for the resonators, so they don’t go back to playing their previous pitches, but rather wait for the next pitch assign to come along before resonating.

Tuning

This parameter allows you to tune the A440 reference of the box anywhere from 430.0-450.0Hz in 0.1Hz increments.

Unison

This is a simple On/Off control. When set to On, pitch assigns will be sent simultaneously to all active resonators. When set to Off, pitch assigns will operate in the round robin method described earlier. This allows you to set multiple delay times for all Voices and allows a single pitch assign (rather than 6 individual assigns) to set all the resonators to the same pitch. The pitch will ring out at 6 different delay times from the input impulse.

Res 2>Plate Pitch Parameters

The voice resonators take the audio impulse from a delay voice and “resonate” it at a desired pitch. The Res2 effect is a “interval harmonization” pitch assign in that pitch changes generate interval pitches to be assigned to the six voice resonators.
PITCH (continued)

Res 2>Plate Pitch Parameters (continued)
Position 0 contains all of the pitch parameters which affect the voices in the remaining position in the row. Press Load/* to cycle through the selections at position 0: Assign, Tuning, Active, Key, Scale, Root and Rule.

Assign
This parameter has a range of C0 to G10 (128 pitches to be convenient for MIDI patching). As the value of this parameter is changed, each voice resonator is set to a pitch at the defined voice’s interval (described later).

Tuning
This parameter allows you to tune the A440 reference of the box anywhere from 430.0-450.0Hz in 0.1Hz increments.

Active
This parameter allows you to define the number of voice resonators which are active. You can choose from 0 (no resonators active) to 6. Setting the value to 1 will permit only Voice 1’s resonator to ring out. Setting the value to 2 will permit Voices 1 and 2 to ring out. A value of 6 uses all the voice resonators. A handy feature of this parameter is the ability to mute resonators. For example, you can patch this parameter to a footswitch or pedal, allowing you to drive the parameter value down to 0 at any time, causing the resonators to stop playing their last assigned pitches. You can then immediately drive it back up to the desired number of active resonators. This “clears” the note assign for the resonators, so they don’t go back to playing their previous pitches, but rather wait for the next pitch assign to come along before resonating.

Key
This parameter establishes a key signature for the pitch selection of the voice intervals. The range of this value is the 12 keys from C, C#, etc., up to B.

Scale
This parameter establishes one of two scales of semitones: a standard Major scale (intervals of 2, 2, 1, 2, 2, 2, 1 half steps for the scale), or a Harmonic scale (intervals of 2, 1, 2, 2, 1, 3, 1).

Root
This parameter (with values of 1-7) establishes the root of the scale which, when combined with the scale, defines the mode. For example, with a Major scale selected, roots 1-7 define the modes — Ionian (Major), Dorian, Phrygian, Lydian, Mixolydian, Aeolian (minor) and Locrian.

Rule
This parameter has four values: Round Down, Round Up, Shift Down, and Shift Up. Its exclusive purpose is to tell the interval harmonizer what to do with out-of-key pitch assignments. The values instruct the interval harmonizer as follows:

Both of these generate in-key harmonization:

- Round Down Take the input pitch assign, round it down a half-step to an in key pitch, then calculate the interval pitch.

- Round Up Take the input pitch assign, round it up a half-step to an in key pitch, then calculate the interval pitch.
Both of these generate out-of-key harmonization:

- **Shift Down** Take the input pitch assign, round it up a half-step to an in-key pitch, calculate the interval pitch then shift the interval pitch down a half-step.

- **Shift Up** Take the input pitch assign, round it down a half-step to an in-key pitch, calculate the interval pitch then shift the interval pitch up a half-step.

Unison and Octave interval pitches strictly follow the input pitch assign. An example of how to use these follows the explanation of Voice Pitch intervals.

V1-V6 Pitch

The Res2>Plate effect has an individual pitch interval control for each voice resonator. The range of each control is up or down any scale interval through five octaves and Unison, for a total of 81 possible settings. For example: an interval of up one-fifth reads "+5th", and an interval of up one octave and a fifth reads "+1 Oct +5th". Down one-fifth reads "–5th", down one octave and a fifth reads "–1 Oct –5th".

An Example Application of Key, Scale, Root, Rule and Voice Pitch Intervals

- Active resonators set to 3.
- The Key is C.

- The Scale is Major.
- The Root is 1. (C Major Ionian)
- Voice 1 Pitch is assigned to Unison.
- Voice 2 Pitch is assigned to +3rd.
- Voice 3 Pitch is assigned to +5th. (Basic triad)

In-key pitch assignment examples:

1. Pitch Assign: C4. Voice 1 will resonate at C4, Voice 2 at E4, and Voice 3 at G4. (Standard chord in the key based on the tonic)
2. Pitch Assign: D4. Voice 1 will resonate at D4, Voice 2 at F4, and Voice 3 at A4. (Standard chord in the key based on the supertonic)
3. Pitch Assign: E4. Voice 1 will resonate at E4, Voice 2 at G4, and Voice 3 at B4. (Standard chord in the key based on the median)
4. Pitch Assign: B4. Voice 1 will resonate at B4, Voice 2 at D5, and Voice 3 at F5. (Standard chord in the key based on the leading tone)

Out-of-key pitch assignment — Pitch Assign: C#:Db4. Rule:

- **Round Down** Voice 1 will resonate at C#/Db4, Voice 2 at E4, and Voice 3 at G4 diminished
- **Round Up** Voice 1 will resonate at C#/Db4, Voice 2 at F4, and Voice 3 at A4 augmented
- **Shift Down** Voice 1 will resonate at C#/Db4, Voice 2 at E4, and Voice 3 at G#:Ab4 minor
- **Shift Up** Voice 1 will resonate at C#/Db4, Voice 2 at F4, and Voice 3 at G#:Ab4 Major
RESONANCE
In the Resonant Chord algorithms: Res1>Plate and Res2>Plate, this row contains high cut filter and resonance controls for each voice, as well as master high cut and resonance controls for all voices.

Mstr Res, Mstr HC
Position 0 of the Resonance row contains two master parameters for the six resonator voices: Mstr Res and Mstr HC. (Press Load/✱ to toggle between them.) Mstr Res is a master resonance control for all of the resonator voices. It allows the resonance settings for all voices to be scaled over a range of 0-100%. Use care when adjusting this value. The resonators will put out high levels if the input source has any components that are close in pitch to the resonator tunings. The Mstr HC control allows the high cut filter settings for all voices to be scaled over a range of 0-100%.

V1Res, V1 HiCut - V6 Res, V6 HiCut
The V1-V6 Res controls set the amount and polarity of feedback for each voice. The HiCut controls set the high frequency cutoff frequency of the 6dB per octave low pass filter for each voice.

RVB DESIGN
The Reverb Design row, available in every algorithm, contains parameters that affect the structural aspects of the reverb effect.

Size
Size sets the rate of diffusion build-up after the initial period (which is controlled by Diffusion). Size changes a reverb sound from very large to very small. Generally, set this control to the approximate size of the acoustic space being created, before adjusting anything else. The size in meters is roughly equal to the longest dimension of the space. Audio is temporarily muted when Size is changed.

Duration
In the Inverse algorithm, Duration determines the length of time, in milliseconds, which passes before the cutoff in Inverse effects.

Attack
Attack is provided in the Plate algorithm to set the sharpness of the initial response to an input signal. High settings cause an explosive sound, while low settings cause the sound to build up more slowly with time. Attack only affects the level of sound within the first 50 milliseconds.

Diffusion
A Diffusion control is provided in all algorithms. It controls the degree to which initial echo density increases over time. High settings of Diffusion result in initial build-up of echo density, and low settings cause low initial build-up. Echo density is also affected by Size; smaller spaces will sound denser. To enhance percussion, use high settings of Diffusion. For clearer and more natural vocals, mixes, and piano music, use low or moderate settings of Diffusion.

Shape, Spread
In the Chamber and Infinite algorithms, Shape and Spread work together to control the overall ambience of the reverb. Shape determines the contour of the reverb envelope. With Shape all the way down, reverb builds explosively, and decays quickly. As Shape is advanced, reverb builds up more slowly and sustains for the time set by Spread. With Shape in the middle, the build-up and sustain of the reverb envelope emulates a large concert hall (assuming that Spread is at least halfway up, and that Size is suitably large — 30 meters or more). Low Spread settings result in a rapid onset of reverb at the beginning of the envelope, with little or no sustain. Higher settings spread out both buildup and sustain. In the Inverse algorithm, Spread is fixed, and only a Shape control is available.
Algorithms and Parameters

Def
Available in the Concert Hall and Glide>Hall algorithms, Definition affects the echo density buildup rate during the latter part of the decay period. At 0, the rate is determined by the program material. Raising Definition causes the sound to become choppier — the decrease in density of the echoes creates increasingly distinct, repetitive echo trails.

Depth
Available in the Concert Hall and Glide>Hall algorithms, this control sets the output amplitude envelope, changing the listener’s perspective from the front to the rear of the hall.

Spin
Spin affects the movement of the reverb tail. The object of Spin is to continuously alter the timbre of the reverb sound. This makes the result more natural, without making the position of instruments unstable. Spin should typically be set to values between 10 and 50. Higher values may make the timbre of piano or guitar unstable.

Chorus
In the Concert Hall and the Glide>Hall algorithms Chorus randomizes delay times and introduces modulation to make reverb sound less metallic. Increasing Chorus increases the modulation rate. Because Chorusing can cause pitch variation, this parameter should be set with care when using sources with very little pitch wobble (such as guitar or piano). A good practice is to increase the setting until pitch wobble becomes noticeable, then lower it slightly.

Link
This control is available in all algorithms except Inverse. When Link is set to On, the reverb time (Mid Rt) and Spread scale linearly as the Size control is varied. For some special effects, Mid Rt, Spread and Size can be unlinked.

Rvb Width
In all of the 4-Voice algorithms, this control performs the same function as FX Width, but controls the audio of only the reverb and post delay reverb.

Rvb In/Out
Rvb In and Rvb Out control the level of the audio going into and coming out of the reverb effect. Rvb In has a range of Full (0dB) down to -85dB, and Off. Rvb Out has a range of Full (0dB) down to -24dB, and Off. Rvb Out does not affect the level of the pre-echoes set by the Ref Lvl and Eko Fbk parameters.

RVB TIME
The Reverb Time row, available in every algorithm, contains parameters that affect the time-based aspects of the reverb effect.

Mid Rt and Low Rt
Mid Rt sets the reverb time for mid-frequency signals. Because low frequency reverb time (Low Rt) is a multiplier of Mid Rt, Mid Rt acts as a master control for the reverb time.

Low Rt sets the reverb time for low-frequency signals, as a multiplier of the Mid Rt parameter. For example, if Low Rt is set to 2X, and Mid Rt is set to two seconds, the low frequency reverb time will be four seconds. For a natural-sounding hall ambience, we recommend values of 1.5X or less.

...continued on page 3-32
Algorithms and Parameters

RVB TIME (continued)

Low Slope and Mid Slope
These parameters are only available in the Inverse algorithm. Low Slope determines the shape of the reverb envelope for low frequencies. When set to 0, the level of low reverb remains unchanged over its Duration, then cuts off abruptly (depending on the amount of diffusion in use). Setting Low Slope above 0 causes the level of low-frequency reverb to rise smoothly from soft to loud until the sound is cut off. The greater the slope, the softer the initial reverberation and the more pronounced its rise. With negative values, the low frequency reverb drops from its initial level to a quieter one before cutoff. The lower the slope, the more pronounced the dropoff.

Mid Slope is similar to Low Slope, but applies to middle and high frequencies. Frequencies affected are determined by Crossover.

Crossover
Crossover sets the frequency at which the transition from Mid Rt to Low Rt takes place. This control should be set at least two octaves higher than the low frequency you want to boost. For example, to boost a signal at 100Hz, set Crossover to 400Hz. (This setting works well for classical music.) Crossover works best around 400Hz for boosting low frequencies, and around 1.5 kHz for cutting low frequencies.

Rt HC
Rt HC sets the frequency above which a 6dB/octave low-pass filter attenuates the reverberated signal. It does not attenuate the reflections. High frequencies are often rolled off with this parameter, resulting in more natural-sounding reverb.

Pre Delay
Pre Delay adjusts an additional time delay between the input of signal and the onset of reverberation. The maximum range is 930ms. This control is not intended to mimic the time delays in natural spaces. In real rooms, the build-up of reverberation is gradual, and the initial time gap is usually relatively short. Natural spaces are best emulated by adjusting Spread for the desired effective predelay.

Infinite
In the Infinite algorithm, this control is provided to turn the infinite effect On or Off.

RefLvl L&R, RefDly L&R
These controls provide pre-echoes to the left and right channels. The maximum range for Inverse effects is 800ms. In all other effects it is 1.2 seconds. Press Load/✱ to cycle through the selections.

EkoFbk L&R, EkoDly L&R
Available in the Plate, Chamber and Infinite algorithms, these controls provide a pre-echo of 1.2 seconds maximum to the left and right channels, with feedback. Press Load/✱ to cycle through the selections.

PstMix, PstGld
In the 4-Voice Algorithms, these controls adjust a pair of delays after the reverb. Press Load/✱ to cycle through the selections: PstMix, Pst Dly L&R, GldResp and GldRange.
Pst Mix
In the 4-Voice Algorithms, this parameter controls the mix of the reverb audio with the post delayed reverb audio (0-100%).

Pst Dly L&R
In the 4-Voice Algorithms, these parameters control the time of the post delay. The available range of 0-682ms can produce a variety of pitch shift, flange, or stutter effects on the reverb audio. (Expanding PCM 81 memory will extend this range to 1365ms.)

GldResp
In the 4-Voice Algorithms, this parameter controls the response of the glide of the post delay. The range is 0-100, with a typical default setting of 50. This setting provides a good, real-time glide. Changing a delay time from 0 to 100 ms with a glide response of 0, causes the glide delays to take a minute or more, allowing subtle changes in delay times and echoes with no noticeable pitch shifting. A glide response of 100 is ultrafast, causing high speed pitch shift, and even chirping effects with large delay time changes.

GldRange
In the 4-Voice Algorithms, this parameter controls the range over which changes to the post delay time will be performed as a glide. For example, if GldRange is set to 100ms, and the PstDly L and R times are varied over a range of 100ms, those delays will glide smoothly from one delay time to another. Suddenly changing the delay time to a greater value, such as 200ms, will cause the audio delay to change instantly to the new time without gliding. The available range is 0-682ms, with 0 causing all delay time changes to be "instantaneous", and 682 causing all delay time changes to glide.

You can set and display delay values in units of time, or with tempo values. Press Up and Tempo simultaneously to toggle between these two options. When time units are selected, delay times are set and displayed in milliseconds (from 0ms to the maximum available delay for that parameter). When tempo values are selected, delay values are set and displayed as a ratio of echoes to beats (from 24:1 to 1:24). This will automatically synchronize the delay to the current tempo (MIDI, Internal, or TAP — see Tempo Mode in Chapter 2.) For example, a delay setting of 1:2 (1 echo for every 2 beats) will produce half-note delay rhythms synchronized to the current tempo.

THE PITCH ALGORITHMS
ABOUT THE PITCH ALGORITHMS
The PCM 81 contains 7 Pitch algorithms, each combined with uncompromised Lexicon reverb to provide a wide range of useful pitch shift effects, ranging from pitch correction to special effects.

A Quad-Hall algorithm provides a 4-voice pitch shifter, combined with the PCM 81 Concert Hall reverb. The Dual-Chmb, Dual-Plt, Dual-Inv, Stereo-Chmb and VSO-Chmb algorithms use the PCM 81 Dual FX structure for unparalleled flexibility and ease of use. The Pitch Correct algorithm provides tools specifically designed for correction of previously recorded vocal tracks.

The five Dual FX-type algorithms: Dual-Chmb, Dual-Plt, Dual-Inv, Stereo-Chmb and VSO-Chmb, each contain two independent effect blocks: one of three stereo reverbs and one of three different stereo pitch shift blocks. Each algorithm also has the full set of modulation and patch features of the 4 and 6-Voice and algorithms.

...continued on page 3-34
ABOUT THE PITCH ALGORITHMS (continued)
Configuration and routing control is provided by a dedicated Submixer incorporated into each of these five algorithms. Any combination of reverb and effects blocks can be arranged in any configuration by changing the Submixer’s controls. As the Submixer has continuously variable controls, you can alter the configurations on the fly — changing, for example, from reverb-into-effects to effects-into-reverb. (Use of the Submixer, which appears as a separate row on the PCM 81 parameter matrix, is described fully after the algorithm and parameter descriptions.) Parameters which are common to the 4-Voice and 6-Voice algorithms are not repeated here. The Pitch Correct algorithm, designed for use with monophonic vocal sources, is described at the end of this section.

ABOUT PITCH SHIFTING
Digital pitch shifting requires temporal compression or expansion of audio data and the addition or removal of small audio segments to compensate.

Raising pitch is accomplished by compressing the audio data — making it run faster. As this shortens the audio segment, a copy of a section of the audio being processed is added to fill out the remaining time. To lower the pitch, the signal is expanded, requiring the removal of a section of the audio. These operations are performed repeatedly at high speed, at intervals which vary according to the type of audio signal being processed.

At each point where audio is added or removed, the audio signal must be rejoined, or spliced. If added or removed segments were perfectly correlated with the remaining audio, splicing would be seamless. In reality, these splice points are the source of audible artifacts which can be minimized, but not completely eliminated.

Much of the art of pitch shifting, therefore, is in determining the appropriate intervals for sampling and the optimal points for splicing. As the PCM 81 Pitch algorithms gives you significant control over these operations, you may find it helpful to keep in mind some of the other factors which can affect pitch shift quality:

- **Amount of pitch shifting**
 Large shift intervals require more splicing. As each splice can be the source of an artifact, increasing their number increases the likelihood of audible artifacts.

- **Pitch-complexity of the input material**
 Pure tones have simple waveforms which can be correlated easily for smooth splicing. Pitch shifting of simple tones such as those generated by a solo voice or a monophonic instrument generally produces fewer artifacts than pitch shifting of wide bandwidth material such as piano chords, full orchestra, etc.

- **Low frequency content of the input material**
 Pitch shifting low frequency material requires the addition or removal of larger segments of audio than high frequency material. The increased size of these segments can introduce delays which are heard as artifacts.

- **Transient content of the input material**
 When large amounts of pitch shifting are applied to complex input material with dense percussive transients (drums, strummed mandolin, complex speech, etc.) some of the transients may lose definition or be shifted slightly in time.
QUAD>HALL

The Quad>Hall algorithm, is a 4-voice pitch shifter in series with the Concert Hall reverb. As in the multi-voice algorithms, each voice has its own delay, level, feedback, cross-feedback and panning controls. The maximum delay time for each voice is 1.250 seconds.

In this algorithm, the reverb effect is fixed in position following the pitch shifters, with a final Mix control allowing control over the amount of reverb in the processed sound. Quad>Hall is designed for creating pitch effects, and is an obvious choice for creating sequences of notes or chords, melody fragments, or small amounts of pitch shift for doubling (or quintupling) effects.

The PCM 81 Concert Hall provides very clean reverberation. It is designed to remain behind the direct sound — adding ambience, but leaving the source unchanged. This effect has a relatively low initial echo density which builds up gradually over time.
The following five Pitch FX algorithms: Dual-Chmb, Dual-Plt, Dual-Inv, Stereo-Chmb and VSO-Chmb are created from 3 Reverb blocks and 3 Pitch Shift Effect blocks. The individual reverb and effect blocks are described, followed by the diagrams and matrixes and parameter descriptions for the algorithms. Descriptions of the controls common to all of these algorithms is presented in following section Using the Submixer.

DUAL-CHAMB

This algorithm includes a dual pitch shifter combined with the Chamber reverb. The pitch shifter has two voices. Each voice has independent controls for pitch, level, delay, pan, feedback and cross-feedback. The pitch of each voice is adjustable up or down over a 3 octave range with a resolution of 1 cent. Maximum delay time for each voice is 1.250 seconds.

The Chamber reverb produces an even, relatively dimensionless reverberation, with little change in color as the sound decays. The initial diffusion is similar to the Concert Hall algorithm, but the sense of space and size is much less obvious. This characteristic, along with the low color in the decay tail, makes Chamber useful on a wide range of material. It is especially useful on spoken voice, giving a noticeable increase in loudness with very low coloration.

Note:

The Dual-Chamb parameter matrix is shown on page 3-42.
DUAL-PLT
This algorithm includes a dual pitch shifter combined with the Plate reverb. The pitch shifter has two voices. Each voice has independent controls for pitch, level, delay, pan, feedback and cross-feedback. The pitch of each voice is adjustable up or down over a 3 octave range with a resolution of 1 cent. Maximum delay time for each voice is 1.250 seconds.

The Plate reverb mimics the sound of metal plates, with high initial diffusion and a relatively bright sound, making it a good choice for enhancing any type of percussion.

Note:
The Dual-Plt parameter matrix is shown on page 3-42.
DUAL-INV

This algorithm includes a dual pitch shifter combined with the Inverse reverb. The pitch shifter has two voices. Each voice has independent controls for pitch, level, delay, pan, feedback and cross-feedback. The pitch of each voice is adjustable up or down over a 3 octave range with a resolution of 1 cent. Maximum delay time for each voice is 1.250 seconds.

Inverse reverb allows you to vary the slope of the initial portion of the reverb envelope. The slope can decay, remain level, or rise over a variable time interval. When the time interval is up, the reverberation cuts off abruptly. The resulting effect is similar to a gate, but is not at all dependent on the level or complexity of the input signal. Slopes are adjustable over a negative, even, or positive slope. Positive slopes create inverse effects, while more even slopes create gated effects. Negative slope values have rather natural reverb tails.

Note:
The Dual-Inv parameter matrix is shown on page 3-43.
STEREO-CHMB

The Stereo-Chmb algorithm is optimized for the best possible shifted audio quality while maintaining the stereo imagery of the source material. Pitch is adjustable up or down over a 3 octave range with a resolution of 1 cent. This effect is combined with the Chamber reverb.

The Chamber reverb produces an even, relatively dimensionless reverberation, with little change in color as the sound decays. The initial diffusion is similar to the Concert Hall algorithm, but the sense of space and size is much less obvious. This characteristic, along with the low color in the decay tail, makes Chamber useful on a wide range of material. It is especially useful on spoken voice, giving a noticeable increase in loudness with very low coloration.

Note:
The Stereo-Chmb parameter matrix is shown on page 3-43.
VSO-CHMB

The VSO-Chmb algorithm provides the same high quality shifter as Stereo-Chmb, designed for on the fly pitch correction of varispeed playback sources. A varispeed parameter allows you to match the varispeed setting of the playback source. The algorithm can match speeds ranging from +55.00% through –35.48% with a resolution of .01%.

This algorithm is a utility program designed to provide pitch correction of varispeed material. This is a true stereo algorithm which maintains the stereo image of source material. It can be used in applications that require on the fly compression/expansion. Simply match the value of the Varispeed parameter to the varispeed setting of the playback source.

For example, to compress a 30 second spot to 24 seconds, the playback speed must be increased by 20%. The spot now has the correct run length, but increasing the speed created an upward pitch shift of 386 cents. Run the shifted audio through the VSO-Chmb algorithm. Set the Varispeed parameter to +20%. This shifts the pitch down 386 cents. The spot now has a run length of 24 seconds and is at its original pitch.

To expand a 28 second spot to 30 seconds, the playback speed must be decreased by 7.14%. Set both the playback source and the VSO Shifter to –7.14%. The spot will remain at its original pitch and have a run length of 30 seconds.
Like the Stereo-Chmb algorithm, VSO-Chmb is combined with a stereo chamber reverb. This adds considerable flexibility. You can for example, add reverb to the material as it is being pitch corrected (great for voiceovers, etc.).

Note that there is no direct synchronization of the pitch shift with the playback source. The accuracy of the pitch correction is dependent upon the accuracy of the playback source’s varispeed mechanism and display.

The Chamber reverb produces an even, relatively dimensionless reverberation, with little change in color as the sound decays. The initial diffusion is similar to the Concert Hall algorithm, but the sense of space and size is much less obvious. This characteristic, along with the low color in the decay tail, makes Chamber useful on a wide range of material. It is especially useful on spoken voice, giving a noticeable increase in loudness with very low coloration.
Dual-Chamb

<table>
<thead>
<tr>
<th>0 Controls</th>
<th>9.0 Mix</th>
<th>0.1 LvlAdjust</th>
<th>0.2 *InLvl/Pan</th>
<th>0.3 FX Width</th>
<th>0.4 *ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Submixer</td>
<td>1.0 Sends</td>
<td>1.1 Returns</td>
<td>1.2 Routing</td>
<td>1.3 *Mix</td>
<td>1.4 *InLvl</td>
</tr>
<tr>
<td>2 Rvb Time</td>
<td>2.0 Low Rt</td>
<td>2.1 Mid Rt</td>
<td>2.2 Crossover</td>
<td>2.3 Rl-HC</td>
<td>2.4 Pre Delay</td>
</tr>
<tr>
<td>3 Rvb Design</td>
<td>3.0 Size</td>
<td>3.1 Diffusion</td>
<td>3.2 Shape</td>
<td>3.3 Spread</td>
<td>3.4 Spin</td>
</tr>
<tr>
<td>4 Levels</td>
<td>4.0 Master</td>
<td>4.1 Voice1</td>
<td>4.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 DelayTime</td>
<td>5.0 Master</td>
<td>5.1 Voice1</td>
<td>5.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Pitch</td>
<td>6.0 *MstrCents</td>
<td>6.1 Voice1</td>
<td>6.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Feedback</td>
<td>7.0 *Mstr Fbk</td>
<td>7.1 *V1 Fbk</td>
<td>7.2 *V2 Fbk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Panning</td>
<td>8.0 *MstrWidth</td>
<td>8.1 Voice1</td>
<td>8.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Modulation</td>
<td>9.0 *ModLFO</td>
<td>9.1 *ModAR Env</td>
<td>9.2 ModEnv L</td>
<td>9.3 ModEnv R</td>
<td>9.4 *ModLatch</td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 0</td>
<td>Patch 1</td>
<td>Patch 2</td>
<td>Patch 3</td>
<td>Patch 4</td>
</tr>
</tbody>
</table>

Dual-Plt

<table>
<thead>
<tr>
<th>0 Controls</th>
<th>9.0 Mix</th>
<th>0.1 LvlAdjust</th>
<th>0.2 *InLvl/Pan</th>
<th>0.3 FX Width</th>
<th>0.4 *ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Submixer</td>
<td>1.0 Sends</td>
<td>1.1 Returns</td>
<td>1.2 Routing</td>
<td>1.3 *Mix</td>
<td>1.4 *InLvl</td>
</tr>
<tr>
<td>2 Rvb Time</td>
<td>2.0 Low Rt</td>
<td>2.1 Mid Rt</td>
<td>2.2 Crossover</td>
<td>2.3 Rl-HC</td>
<td>2.4 Pre Delay</td>
</tr>
<tr>
<td>3 Rvb Design</td>
<td>3.0 Size</td>
<td>3.1 Diffusion</td>
<td>3.2 Attack</td>
<td>3.3 Spin</td>
<td>3.4 Link</td>
</tr>
<tr>
<td>4 Levels</td>
<td>4.0 Master</td>
<td>4.1 Voice1</td>
<td>4.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 DelayTime</td>
<td>5.0 Master</td>
<td>5.1 Voice1</td>
<td>5.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Pitch</td>
<td>6.0 *MstrCents</td>
<td>6.1 Voice1</td>
<td>6.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Feedback</td>
<td>7.0 *Mstr Fbk</td>
<td>7.1 *V1 Fbk</td>
<td>7.2 *V2 Fbk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Panning</td>
<td>8.0 *MstrWidth</td>
<td>8.1 Voice1</td>
<td>8.2 Voice2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Modulation</td>
<td>9.0 *ModLFO</td>
<td>9.1 *ModAR Env</td>
<td>9.2 ModEnv L</td>
<td>9.3 ModEnv R</td>
<td>9.4 *ModLatch</td>
</tr>
<tr>
<td>Patches</td>
<td>Patch 0</td>
<td>Patch 1</td>
<td>Patch 2</td>
<td>Patch 3</td>
<td>Patch 4</td>
</tr>
</tbody>
</table>
Dual-Inv

<table>
<thead>
<tr>
<th>0</th>
<th>Controls</th>
<th>0.0</th>
<th>Mix</th>
<th>0.1</th>
<th>LvlAdj</th>
<th>0.2</th>
<th>*InLvl/Pan</th>
<th>0.3</th>
<th>FX Width</th>
<th>0.4</th>
<th>*ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submixer</td>
<td>1.0</td>
<td>Sends</td>
<td>1.1</td>
<td>Returns</td>
<td>1.2</td>
<td>Routing</td>
<td>1.3</td>
<td>*InLvl</td>
<td>1.4</td>
<td>*OutLvl</td>
</tr>
<tr>
<td>2</td>
<td>Rvb Time</td>
<td>2.0</td>
<td>Low Slope</td>
<td>2.1</td>
<td>Mid Slope</td>
<td>2.2</td>
<td>Crossover</td>
<td>2.3</td>
<td>RH HC</td>
<td>2.4</td>
<td>Pre Delay</td>
</tr>
<tr>
<td>3</td>
<td>Rvb Design</td>
<td>3.0</td>
<td>Duration</td>
<td>3.1</td>
<td>Diffusion</td>
<td>3.2</td>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Levels</td>
<td>4.0</td>
<td>Master</td>
<td>4.1</td>
<td>Voice1</td>
<td>4.2</td>
<td>Voice2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DelayTime</td>
<td>5.0</td>
<td>Master</td>
<td>5.1</td>
<td>Voice1</td>
<td>5.2</td>
<td>Voice2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pitch</td>
<td>6.0</td>
<td>*MstrCents</td>
<td>6.1</td>
<td>Voice1</td>
<td>6.2</td>
<td>Voice2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Feedback</td>
<td>7.0</td>
<td>*Mstr Fbk</td>
<td>7.1</td>
<td>*V1 Fbk</td>
<td>7.2</td>
<td>*V2 Fbk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Panning</td>
<td>8.0</td>
<td>MstWidth</td>
<td>8.1</td>
<td>Voice1</td>
<td>8.2</td>
<td>Voice2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Modulation</td>
<td>9.0</td>
<td>*Mod LFO</td>
<td>9.1</td>
<td>*Mod AR Env</td>
<td>9.2</td>
<td>Mod Env L</td>
<td>9.3</td>
<td>Mod Env R</td>
<td>9.4</td>
<td>*Mod Latch</td>
</tr>
</tbody>
</table>

Patches
- Patch 0
- Patch 1
- Patch 2
- Patch 3
- Patch 4
- Patch 5
- Patch 6
- Patch 7
- Patch 8
- Patch 9

Stereo-Chmb

<table>
<thead>
<tr>
<th>0</th>
<th>Controls</th>
<th>0.0</th>
<th>Mix</th>
<th>0.1</th>
<th>LvlAdj</th>
<th>0.2</th>
<th>*InLvl/Pan</th>
<th>0.3</th>
<th>FX Width</th>
<th>0.4</th>
<th>*ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submixer</td>
<td>1.0</td>
<td>Sends</td>
<td>1.1</td>
<td>Returns</td>
<td>1.2</td>
<td>Routing</td>
<td>1.3</td>
<td>*InLvl</td>
<td>1.4</td>
<td>*OutLvl</td>
</tr>
<tr>
<td>2</td>
<td>Rvb Time</td>
<td>2.0</td>
<td>Low Rt</td>
<td>2.1</td>
<td>Mid Rt</td>
<td>2.2</td>
<td>Crossover</td>
<td>2.3</td>
<td>RH HC</td>
<td>2.4</td>
<td>Pre Delay</td>
</tr>
<tr>
<td>3</td>
<td>Rvb Design</td>
<td>3.0</td>
<td>Size</td>
<td>3.1</td>
<td>Diffusion</td>
<td>3.2</td>
<td>Shape</td>
<td>3.3</td>
<td>Spread</td>
<td>3.4</td>
<td>Spin</td>
</tr>
<tr>
<td>4</td>
<td>Pitch</td>
<td>4.0</td>
<td>*Low Pitch</td>
<td>4.1</td>
<td>Shift L+R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Modulation</td>
<td>5.0</td>
<td>*Mod LFO</td>
<td>5.1</td>
<td>*Mod AR Env</td>
<td>5.2</td>
<td>Mod Env L</td>
<td>5.3</td>
<td>Mod Env R</td>
<td>5.4</td>
<td>*Mod Latch</td>
</tr>
</tbody>
</table>

Patches
- Patch 0
- Patch 1
- Patch 2
- Patch 3
- Patch 4
- Patch 5
- Patch 6
- Patch 7
- Patch 8
- Patch 9
THE PITCH PARAMETERS

MstrCents
This is a master pitch offset control for all voices. The value dialed in here will be added to all voices. This control allows you to transpose pitch voices while keeping the relative interval(s) between them constant.

MstrScale
This is a master pitch scaling control for all voices. The value of each pitch voice is multiplied by this percentage. This control allows you to shrink or enlarge the relative interval(s) between all voices.

Low Pitch
This parameter allows you to optimize the pitch shifter for the low frequency content of the input material. Use low values when shifting single note material with low frequencies, polyphonic sources or full bandwidth material. Note that the lower this value, the longer the pitch shifted material is delayed. At the lowest setting, the amount of delay is about 42ms. At the highest setting it is about 12ms.

Use this parameter to minimize the amount of delay inherent in the pitch shift process. If the maximum delay of about 40ms is not a problem, you can simply set this value to its lowest setting. To minimize the delay for single note pitch shifting, set it to a value that matches the pitch of the lowest note in the input material. If you are pitch shifting polyphonic input material you may get better results by setting the value lower than the lowest note in the input material.

Lowest note of some typical sources:
- Piano: A0
- Tenor Sax: Bb2
- Bass guitar: E1
- Vocal: bass: Eb2
- Guitar: E2
- Vocal: baritone: Ab2
- Trombone: F2
- Vocal: tenor: Db3

Splice
This parameter allows you to change the number of milliseconds used to crossfade the splices that are constantly occurring whenever pitch is shifted. For most material a value of 4ms is appropriate. Higher values will produce longer/smoothier crossfades, but the intelligibility of transients and high frequency content may be affected. Lower values will reproduce transients more accurately and have more high frequency content, but the splices may be more audible.

GldResp
This parameter is similar to the GldResp parameter in the Master Delay parameter of the delay and reverb algorithms. It sets the pitch shifters responsiveness to modulation by internal controllers (LFO, AR, etc.) and MIDI controllers (AfterTouch, Velocity, etc.). It has no effect on the quality of the pitch shifted sound. At the highest setting (100) the pitch will track the modulation source very closely. At lower settings, the pitch will lag behind the modulation source. Use lower settings to smooth out modulation effects.
Voice 1-4 (or 1-2)

These parameters determine the amount of pitch shift for the left and right input channels. In the Quad Shift algorithm, Voices 1 and 2 are left shifts and 3 and 4 are right shifts. In the 2-Voice algorithms, Voice 1 is left shift and Voice 2 is right shift. The value is given in cents (one cent is equal to 1/100th of a semitone — there are 1200 cents per octave, as shown below). The full range of pitch shift is up or down three octaves (+3600 cents). The range is adjustable in increments of a single cent. These values can be modulated smoothly with patch sources to create vibrato, Doppler, whammy bar and other pitch-related special effects.

<table>
<thead>
<tr>
<th>Shift Values (Cents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2000</td>
</tr>
<tr>
<td>+1800</td>
</tr>
<tr>
<td>+1600</td>
</tr>
<tr>
<td>+1400</td>
</tr>
<tr>
<td>+1200</td>
</tr>
<tr>
<td>+1000</td>
</tr>
<tr>
<td>+800</td>
</tr>
<tr>
<td>+600</td>
</tr>
<tr>
<td>+400</td>
</tr>
<tr>
<td>+200</td>
</tr>
<tr>
<td>+100</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-100</td>
</tr>
<tr>
<td>-200</td>
</tr>
<tr>
<td>-300</td>
</tr>
<tr>
<td>-400</td>
</tr>
<tr>
<td>-500</td>
</tr>
<tr>
<td>-600</td>
</tr>
<tr>
<td>-700</td>
</tr>
<tr>
<td>-800</td>
</tr>
<tr>
<td>-900</td>
</tr>
<tr>
<td>-1000</td>
</tr>
<tr>
<td>-1200</td>
</tr>
<tr>
<td>-1400</td>
</tr>
<tr>
<td>-1600</td>
</tr>
<tr>
<td>-1800</td>
</tr>
<tr>
<td>-2000</td>
</tr>
</tbody>
</table>

Shift L+R

In the Stereo Shift algorithm, this parameter determines the amount of pitch shift for both the left and right channels. This is a true stereo pitch shifter. The left and right channels are sample synchronous to maintain stereo imaging.

Tips for Setting Pitch Parameters

All pitch shifting algorithms will produce some amount of glitches and all pitch shift algorithms have some amount of built in delay. Single note sources shift best. When shifting single notes, Low Pitch should be set at or below the lowest pitch in the input material.

When shifting chords or full bandwidth material, first set the amount of shift. If you need to minimize the delay caused by the shifter, set Low Pitch to the lowest value and slowly increase it to the highest value that doesn’t produce unacceptable glitches.

The Splice parameter generally works best for most material when set to 4ms. If the shifted audio sounds a bit harsh, you can smooth it out by raising this value. If there is a loss of intelligibility or rhythmic accuracy in the shifted audio, try setting Splice to a smaller value. As with most effect parameters, you should rely on your ears to find the best settings for a given situation.

USING THE SUBMIXER

Expanded configuration control is available in those Pitch algorithms which have a Submixer incorporated into each algorithm. This Submixer lets you arrange any combination of reverb and effects blocks in any configuration simply by changing the three main Submixer controls: Sends, Returns and Routing. Additional controls are provided for each block: Input Level, Input Width, Output Width, Output Level, High Cut and Low Cut filters, and Wet/Dry Mix.

The Submixer appears as row 1 on the parameter matrix (pictured on the next page). The first three parameters in the row are the basic Submixer controls: Sends, Returns, and Routing. Any configuration can be achieved by simply adjusting these three parameters.

The key to using the Sub Mixer parameters is understanding what the Sends and Returns parameters do, and how they interact with the Routing Parameters.
The Sends parameter routes the PCM 81’s two panned input signals to the four effect inputs (the Rvb and FX blocks). This parameter has a range of 0–300. The value of this parameter determines what mix of the left and right input signals is fed to the stereo inputs of the Rvb and FX blocks. The values 0, 100, 150, 200, 300 correspond to specific configurations and are labeled with text instead of numbers.

The Dual-Chmb, Dual-Plt, Dual-Inv and Stereo-Chmb algorithms contain a complete dual-channel effects mixer.
PCM 81

Algorithms and Parameters

<table>
<thead>
<tr>
<th>Sends Value</th>
<th>Rvb Sends</th>
<th>FX Sends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo (0)</td>
<td>L to left Rvb In</td>
<td>L to left FX In</td>
</tr>
<tr>
<td></td>
<td>R to right Rvb In</td>
<td>R to right FX In</td>
</tr>
<tr>
<td>L=Rvb, R=FX (100)</td>
<td>L to left Rvb In</td>
<td>R to left FX In</td>
</tr>
<tr>
<td></td>
<td>L to right Rvb In</td>
<td>R to right FX In</td>
</tr>
<tr>
<td>Mono (150)</td>
<td>L+R to left Rvb In</td>
<td>L+R to left FX In</td>
</tr>
<tr>
<td></td>
<td>L+R to right Rvb In</td>
<td>L+R to right FX In</td>
</tr>
<tr>
<td>L=FX, R=Rvb (200)</td>
<td>R to left Rvb In</td>
<td>L to left FX In</td>
</tr>
<tr>
<td></td>
<td>R to right Rvb In</td>
<td>R to right FX In</td>
</tr>
<tr>
<td>Stereo (300)</td>
<td>L to left Rvb In</td>
<td>L to left FX In</td>
</tr>
<tr>
<td></td>
<td>R to right Rvb In</td>
<td>R to right FX In</td>
</tr>
</tbody>
</table>

Returns Value

<table>
<thead>
<tr>
<th>Returns Value</th>
<th>Rvb Returns</th>
<th>FX Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono (150)</td>
<td>left + right Rvb Out to L</td>
<td>left + right FX Out to L</td>
</tr>
<tr>
<td></td>
<td>right Rvb Out to R</td>
<td>right FX Out to R</td>
</tr>
<tr>
<td>FX=L, Rvb=R (200)</td>
<td>left Rvb Out to R</td>
<td>left FX Out to L</td>
</tr>
<tr>
<td></td>
<td>right Rvb Out to R</td>
<td>right FX Out to L</td>
</tr>
<tr>
<td>Stereo (300)</td>
<td>left Rvb Out to L</td>
<td>left FX Out to L</td>
</tr>
<tr>
<td></td>
<td>right Rvb Out to R</td>
<td>right FX Out to R</td>
</tr>
</tbody>
</table>

ROUTING

The Routing parameter provides continuously variable control of the FX and Rvb effect routing: Rvb and FX in parallel, Rvb into FX (series) and FX into Rvb (reverse series). This parameter has a range of 0–400. The value of this parameter determines the routing/ordering of the stereo Rvb and FX effects. The values 0, 100, 150, 200, 300, 400 correspond to specific configurations and are labeled with text instead of numbers.

<table>
<thead>
<tr>
<th>Routing Value</th>
<th>Effects Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel (0)</td>
<td>Rvb and FX are parallel</td>
</tr>
<tr>
<td>Rvb into FX (100)</td>
<td>Rvb outputs into FX inputs (series 1)</td>
</tr>
<tr>
<td>Parallel (200)</td>
<td>Rvb and FX are parallel</td>
</tr>
<tr>
<td>FX into Rvb (300)</td>
<td>FX outputs into Rvb inputs (series 2)</td>
</tr>
<tr>
<td>Parallel (400)</td>
<td>Rvb and FX are parallel</td>
</tr>
</tbody>
</table>

Note that the routing value takes precedence over the Sends and Returns values. For example, if Routing is set to Rvb into FX (100), no input signal is routed directly to the FX inputs — and the Rvb outputs aren’t sent directly to the PCM 81’s main outputs.
USEFUL CONFIGURATIONS

It is possible to arrange the stereo Rvb and FX inputs and outputs into a variety of useful configurations by simply adjusting the Sends, Returns and Routing parameters. The following illustrations show several of these configurations. Each illustration contains a block diagram showing signal flow through the Submixer, and the displayed values for the Sends, Returns, and Routing parameters that will produce the configuration.

Stereo Series 1
- The main stereo inputs are sent into the Rvb block.
- The stereo output of the Rvb block is sent into the stereo inputs of the FX block.
- The stereo output of the FX block is sent to the main left and right outputs.

Stereo Series 2
- The main stereo inputs are sent into the FX block.
- The stereo output of the FX block is sent into the stereo inputs of the Rvb block.
- The stereo output of the Rvb block is sent to the main left and right outputs.
Mono In/Stereo Out Series 1

- A mono mix of the left and right inputs is sent into the Rvb block.
- The stereo output of the Rvb block is sent to the stereo inputs of the FX block.
- The stereo output of the FX block is sent to the main left and right outputs.

Mono In/Stereo Out Series 2

- A mono mix of the left and right inputs is sent into the FX block.
- The stereo output of the FX block is sent into the stereo inputs of the Rvb block.
- The stereo output of the Rvb block is sent to the main left and right outputs.
Stereo Parallel

- The Rvb and FX blocks process the left and right inputs independently.
- The stereo outputs of both the Rvb and FX blocks are combined at the main outputs.

Mono In/Stereo Out Parallel

- The Rvb and FX blocks each independently process a mono mix of the left and right inputs.
- The stereo outputs of both the Rvb and FX blocks are combined at the main outputs.
Dual Mono In/Stereo Out
- The Rvb block processes only the left input as a mono signal, and the FX block processes only the right input as a mono signal.
- The stereo outputs of both the Rvb and FX blocks are combined at the main outputs.

Dual Mono In/Mono Out
- The Rvb block processes only the left input as a mono signal, and the FX block processes only the right input as a mono signal.
- A mono mix of the Rvb block output is sent to the left main output. A mono mix of the FX output is sent to the right main output.

Dual Mono In/Mono Out
- The Rvb block processes only the left input as a mono signal, and the FX block processes only the right input as a mono signal.
- A mono mix of the Rvb block output is sent to the left main output. A mono mix of the FX output is sent to the right main output.
RVB AND FX BLOCK CONTROLS

The Rvb and FX blocks shown in the previous configurations represent the Stereo Reverb and 2-Voice Pitch Shift effects. Each of these blocks has its own set of controls, shown in the diagrams below.

Reverb Block

![Reverb Block Diagram](image)

Pitch FX Block

![Pitch FX Block Diagram](image)
These effect block controls are also found in the Submixer row of each parameter matrix (pictured here).

Press Load/✱ to toggle between Rvb and FX parameters.

These parameters are described below, in the order in which they appear in the Submixer row. (All other effect parameters are identical to those described earlier for the 4-Voice and 6-Voice algorithms.

RvbMix, FX Mix
These are independent wet/dry mix controls for the Rvb and FX effect blocks.

RvbInLvl, FX InLvl
These are independent input level controls for the Rvb and FX blocks.

Rvb In W, FX In W
These are input width controls for the Rvb and FX blocks. These are essentially the same as the PCM 81 FX Width and Rvb Width parameters. The difference is that the width control in the Pitch FX algorithms is located at the input to the effect. This makes it possible to independently alter the stereo image of material feeding the two effect blocks.

RvbHiCut, FX HiCut
These parameters provide independent 6dB per octave, stereo high-cut filters on the outputs of the Rvb and FX blocks.

RvbLoCut, FX LoCut
These parameters provide independent 6dB per octave, stereo low-cut filters on the outputs of the Rvb and FX blocks.

RvbOutLvl, FX OutLvl
These are independent output level controls for the Rvb and FX blocks.

Rvb Out W, FX Out W
These parameters allow independent control of the stereo image of the output of each effect block.
THE PITCH CORRECT ALGORITHM

The Vocal Fix Pitch Correct algorithm is designed to work with monophonic (one note at a time) vocal sources. The algorithm contains an intelligent pitch shifter combined with a PCM 81 Chamber reverb. The intelligent pitch shifter detects the pitch of incoming audio and produces effects based on the detected pitch.

The reverb follows the pitch shifter in series. The FX Mix parameter is set to 0% reverb as most applications require only pitch processing.

The algorithm provides a simple, yet powerful, set of tools for correction of previously recorded melody tracks which are off pitch. The Pitch Detect display shows the pitch of the input source in real time, displayed as a chromatic note and cents so that you can see exactly where and how much correction is needed. For most applications correction will only be needed for notes that are audibly sour.

There are two basic approaches to this type of pitch correction. The first is to patch the Correct parameter to a switch or to the ADJUST knob, the second is to use a MIDI keyboard to control correction. The pitch method is preferable for fine tuning a performance, whereas using a MIDI keyboard provides more flexibility when handling more serious pitch errors, or when it is necessary to completely rework the melody.

MIDI control is straightforward. Just connect a MIDI keyboard to the PCM 81 MIDI IN jack, set the keyboard and the PCM 81 to the same MIDI channel, and you’re ready to start. Don’t try to play the melody note-for-note — just press the keys needed to correct bad notes. When you press a key on the MIDI keyboard, the audio is forced to the keyboard’s pitch. When you release the key, the audio is processed according to the settings you have made to Correct and Tracking. Typically, Correct will be set to 0% and Tracking set to Fastest. This results in the MIDI note determining the correct pitch and triggering correction on and off. (By the way, you don’t need a score to know which note, just watch the Pitch Detect display.)
The Chamber reverb produces an even, relatively dimensionless reverberation, with little change in color as the sound decays. The initial diffusion is similar to the Concert Hall algorithm, but the sense of space and size is much less obvious. This characteristic, along with the low color in the decay tail, makes Chamber useful on a wide range of material. It is especially useful on spoken voice, giving a noticeable increase in loudness with very low coloration.

THE PITCH CORRECT PARAMETERS

Controls Row

FX HiCut, FX LoCut
These parameters control stereo high cut and low cut filters on the algorithm outputs. Each has a range of 20Hz-20kHz.

Pitch Row

Detect
This parameter displays the source used for pitch detection: Input, Fixed or MIDI.

• Input
Pitch is detected from the sum of the left and right input signals. The detected pitch and the number of cents sharp or flat is displayed and updated in real time.

• Fixed
ADJUST scrolls through the range of available pitches. The number of cents sharp or flat from the selected fixed pitch is displayed and updated in real time.

• MIDI
This setting is displayed when you use a MIDI keyboard as the note detect source. Connect a MIDI keyboard to PCM 81 rear panel MIDI IN jack and set both to the same MIDI channel. Whenever a preset that uses the PitchCorrect algorithm is running, the shifter will detect the pitch of any MIDI key you press. The display will show the MIDI pitch and the number of cents sharp or flat in real time as the pitch of the input signal varies. Correct the pitch of any melody by simply playing the appropriate MIDI key when ever the melody pitch drifts from the desired note.
Corrections
This parameter lets you control the amount of off-pitch correction (0-100%) applied. When set to 0, no correction is applied. When set to 100%, notes are shifted as close as possible to the frequency of the detected pitch (or to the frequency of harmonies of the detected pitch).

GldResp
This parameter is similar to the GldResp parameter found in the Master Delay parameter of several PCM 81 delay and reverb algorithms. It sets the pitch shifter’s responsiveness to the pitch detect source and also to modulation by internal controllers (LFO, AR etc.) and MIDI controllers (aftertouch, velocity, etc.) At the highest setting (100), the pitch will track the detect source very closely. At lower settings, the pitch will lag behind the modulation source. A setting of about 50 generally yields good results for tracking vocals.

Tracking
This parameter controls how quickly (accurately) the pitch detector will follow pitch changes in the detect source. This control can be set to Fastest, Fast, Moderate, Slow or Hold.

- **Fastest**
 This is generally the most useful setting as it provides accurate tracking as well as good handling of vibrato or pitch bends.

- **Fast, Moderate, and Slow Hold**
 These settings are useful for special effects. This setting freezes at the last detected pitch, effectively turning any melody into a pedal tone.

Low Pitch and High Pitch
These controls allow you to set a range of pitches to be detected. This is very useful with source material that has extraneous noise, for example, a vocal track which contains some headphone leakage picked up by the vocal mics. If Low and High Pitch are set to bracket only the vocal frequencies, there will be no glitches caused by the shifter detecting headphone material outside the vocal range.

Note that Low Pitch also affects the amount of time that the pitch shifted material is delayed. At the lowest setting, the amount of delay is about 60ms. At the highest setting it is about 20ms.

For reference, a list of the lowest and highest pitches of some typical sources is shown below.

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>vocal: bass</td>
<td>Eb2 to -Eb4</td>
</tr>
<tr>
<td>vocal: baritone</td>
<td>Ab2 to -Ab4</td>
</tr>
<tr>
<td>vocal: tenor</td>
<td>C3 to -C5</td>
</tr>
<tr>
<td>vocal: alto</td>
<td>F3 to -F5</td>
</tr>
<tr>
<td>vocal: soprano</td>
<td>C4 to -C6</td>
</tr>
</tbody>
</table>

Tuning
This parameter allows you to set a reference frequency for the pitch, “A”. The range is from 410.0-470.0Hz. The standard reference frequency is 440.0Hz.
Splice
This parameter allows you to change the amount of time used to crossfade the splices that occur whenever pitch is shifted. A value of 8ms is appropriate for most material. Higher values will produce longer/smooth cross-fades, but the intelligibility of transients and high frequency content may be affected. Lower values will reproduce transients more accurately and have more high frequency content, but the splices may be more audible.

Shift Row

Shift Cents
This parameter determines the amount of fixed shift for the stereo input channels. The value is given in cents (1 cent=1/100th of a semitone, 1200 cents/octave). The range is adjustable in increments of a single cent. This value can be modulated smoothly with patch sources to create vibrato and other pitch-related special effects.

Shift Semitones
This parameter provides ±1 octave of pitch shift in half-step (chromatic) intervals.

Note:

As the Cents and Semitones controls are additive, it is possible to shift tones by as much as ±2 octaves.
Overview ..4-2

Program Bank 0 (P0)..4-3
 Multi Effects • Modulation Effects • Special Effects

Program Bank 1 (P1)..4-8
 Rhythmic Echo and Delay Effects • Ambience Effects

Program Bank 2 (P2)..4-13
 EQ Effects • Spatial Effects • Gain Effects • Resonant Chord Effects

Program Bank 3 (P3)..4-19
 Reverb Effects • Processed Reverb Effects • Remix Effects

Program Bank 4 (P4)..4-24
 Vocal Shift • Vocal Harmony • Guitar Magic • Instrument Shift & Harmony •
 Percussion & Tempo

Program Bank 5 (P5)..4-29
 Sci-Fi FX • Pitch & Delay • Pitch Sequences • Pads & Drones • Utility
 Programs • Pitch Correct

Alphabetical Index of Presets..4-34
The PCM 81 has 300 factory-designed presets which are organized into six banks of 50 each (labeled P0- P5). Each bank is organized in a matrix of 5 rows of 10. Press the front panel Program Banks button to display the first bank. Press it again to switch to another bank. Simultaneously press Program Banks and either the Up or Down button to backstep through the banks. The display will show the bank label and the matrix location, the preset name, and the algorithm from which the effect is derived. Turn SELECT to scroll through all of the presets in numerical order. Use Up or Down to jump forward or backward by 10. Press Load/* to load any displayed preset.

In the Program Banks mode (as in the Register Banks mode), ADJUST is a soft knob. Each preset has one or more parameters patched to this knob, providing a quick way to make useful changes to the effect. (A n symbol in the upper left corner of the display indicates that the currently running effect has an ADJUST knob patch.) When you turn ADJUST, the display will show the name assigned to ADJUST, as well as the patch value. Continue turning ADJUST to alter the patch value along its available range. The program banks are organized as shown at the right.

Each preset is described in this section with a header which indicates the matrix location, the program name, the name assigned to the ADJUST knob, and the range of ADJUST knob control. This header is followed by a brief description of the effect. For additional reference, at the end of this chapter is an alphabetical list of the presets, with references to bank and matrix location.

<table>
<thead>
<tr>
<th>Bank</th>
<th>Matrix Location</th>
<th>Preset Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>0.0–1.9</td>
<td>Multi Effects</td>
</tr>
<tr>
<td></td>
<td>2.0–3.5</td>
<td>Modulation Effects</td>
</tr>
<tr>
<td></td>
<td>3.6–4.9</td>
<td>Special Effects</td>
</tr>
<tr>
<td>P1</td>
<td>0.0–3.6</td>
<td>Rhythmic Echo and Delay Effects</td>
</tr>
<tr>
<td></td>
<td>3.7–4.9</td>
<td>Ambience Effects</td>
</tr>
<tr>
<td>P2</td>
<td>0.0–1.0</td>
<td>EQ Effects</td>
</tr>
<tr>
<td></td>
<td>1.1–2.4</td>
<td>Spatial Effects</td>
</tr>
<tr>
<td></td>
<td>2.5–4.0</td>
<td>Gain Effects</td>
</tr>
<tr>
<td></td>
<td>4.1–4.9</td>
<td>Resonant Chord Effects</td>
</tr>
<tr>
<td>P3</td>
<td>0.0–2.8</td>
<td>Reverb Effects</td>
</tr>
<tr>
<td></td>
<td>2.9–3.9</td>
<td>Processed Reverb Effects</td>
</tr>
<tr>
<td></td>
<td>4.0–4.9</td>
<td>Remix Effects</td>
</tr>
<tr>
<td>P4</td>
<td>0.0–1.0</td>
<td>Vocal Shift</td>
</tr>
<tr>
<td></td>
<td>1.1–1.9</td>
<td>Vocal Harmony</td>
</tr>
<tr>
<td></td>
<td>2.0–2.9</td>
<td>Guitar Magic</td>
</tr>
<tr>
<td></td>
<td>3.0–3.9</td>
<td>Instrument Shift & Harmony</td>
</tr>
<tr>
<td></td>
<td>4.0–4.9</td>
<td>Percussion & Tempo</td>
</tr>
<tr>
<td>P5</td>
<td>0.0–0.9</td>
<td>Sci-Fi FX</td>
</tr>
<tr>
<td></td>
<td>1.0–1.9</td>
<td>Pitch & Delay</td>
</tr>
<tr>
<td></td>
<td>2.0–2.9</td>
<td>Pitch Sequences</td>
</tr>
<tr>
<td></td>
<td>3.0–3.7</td>
<td>Pads & Drones</td>
</tr>
<tr>
<td></td>
<td>3.8–3.9</td>
<td>Utility Programs</td>
</tr>
<tr>
<td></td>
<td>4.0–4.9</td>
<td>Pitch Correct</td>
</tr>
</tbody>
</table>
PROGRAM BANK 0 (P0)

MULTI EFFECTS

0.0 Prime Blue
ADJUST: Efx/Rvb X 0–127
A combination of 3 stereo effects: 6 voice chorus, rhythmic echoes, and reverb. You can dial-in the exact proportion of each. As ADJUST is turned from 0 to 127 the effect smoothly changes from chorus only, to chorus with echoes, to chorus with echoes and reverb, to reverb with echoes, and finally to reverb only. Use Tap to set the echo rhythms.

0.1 EkoChorus
ADJUST: FX Mix 0–127
A 6 voice stereo chorus with echoes and stereo reverb. ADJUST controls the mix of chorus/echoes with reverb. The Soft Row provides all the tweaks you'll need to get the most out of this classic multi effect.

0.2 Wet Chorus
ADJUST: FX Mix 0–100
This is a thick wet chorus combined with a small amount of reverb to produce a large lush sound. It can fatten up any track and is especially good for adding body to guitar. ADJUST controls the combination of delays and chorus with reverb.

0.3 Wet Chorus 2
ADJUST: FX Mix 0–100
This is a variation of Wet Chorus with a subtle amount of delays and reverb to produce just the right amount of ambience. ADJUST controls the combination of delays and chorus with reverb.

0.4 Wet Chorus 3
ADJUST: FX Mix 0–100
A variation of Wet Chorus 2 with even thicker chorus (bordering on a slight flange) and slightly modified delays. ADJUST controls the combination of delays and chorus with reverb.

0.5 Chorus Plate
ADJUST: KorusMix 0–100
Combination of smooth rolling delays in the reverb shell combined with a more aggressively modulated reverb tail. ADJUST changes the non-modulated to modulated reverb tail. Twisted for guitar.

0.6 Chorus Room
ADJUST: Decay 0–80
Slow chorus applied to one side of the reverb. The speed of the modulation follows input level. ADJUST controls the reverb decay.

0.7 ChorusToRvb
ADJUST: Decay 0–127
Input level controls the relative mix of stereo chorus and reverb. Loud signals are mostly chorus and the reverb level comes up as the signal fades away. ADJUST controls the reverb decay time.

0.8 Funkus Room
ADJUST: LFO Rate 0–100
This preset works great on electronic pianos / keyboards. Strong modulation applied to both delays and reverb tail. ADJUST controls the speed of the LFO modulation.

0.9 Detune & Room
ADJUST: Detune 0–127
A very tight room combined with separate pitch modulation on the left and right inputs. ADJUST controls the depth of the detuning.
Presets

PROGRAM BANK 0 (P0) (continued)

MULTI EFFECTS (continued)

1.0 **Detune&Dbl**
ADJUST: Detune 0–127
Similar to Detune & Room, but several delay voices have been added to produce doubling effects. **ADJUST** controls the amount of detune on each side. Soft Row goodies include a master delay control that allows you to vary the time difference between the delay voices.

1.1 **Tight Space**
ADJUST: SplitWide 0–100
A bright, dry ambience combined with left and right detune and delay. **ADJUST** controls the amount of detune as well as the left/right delay spread.

1.2 **Flange >Rvb**
ADJUST: FX Mix 0–100
This stereo effect feeds the output of a flanger into a concert hall reverb. **ADJUST** controls the mix of dry and wet flanged audio. The Soft Row includes master delay and feedback parameters for adding echoes, as well as parameters for modulation and image control.

1.3 **Flange+Rvb**
ADJUST: FX Mix 0–100
A rich 6 voice chorus in parallel with reverb. **ADJUST** controls the mix of the two independent stereo effects. The Soft Row includes the essential parameters for creating many variations of this classic combination of effects.

1.4 **X Eko Flange**
ADJUST: X-Fbk 0–100
A stereo flanger with rhythmic echoes feeding into stereo reverb. **ADJUST** controls the cross-feedback of the echoes (which causes them to bounce from side to side as they repeat). Press Tap to synchronize the echoes with rhythmic sources.

1.5 **Glide > Verb**
ADJUST: FX Mix 0–100
Three stereo effects in series: gliding delays, rhythmic echoes and reverb. **ADJUST** controls the mix of delay effects and reverb. Essential controls for each effect are included in the Soft Row.

1.6 **Glide X-Ekos**
ADJUST: Eko Time 0–100
Similar to Glide > Verb, but **ADJUST** lets you dial in echo times from 0 to 2 seconds. Feedback and cross feedback are combined to create echo patterns that change as they repeat.

1.7 **Detuned Ekos**
ADJUST: Ekos/Beat 1–24
Plate reverb combined with independent stereo delays. The delay voices are diffused and modulated. The echoes are rhythmic — set the tempo with Tap or MIDI clocks. Use **ADJUST** to set the number of echoes per beat.

1.8 **StereoEqEkos**
ADJUST: Ekos/Beat 1–24
Six rhythmic echo voices are EQ’d and panned across stereo space. **ADJUST** sets the number of repeats per beat.

1.9 **AdjUpMyEchoes**
ADJUST: EchosLvl 0–10
Concert Hall reverb with 4 panned echo voices in the background. **ADJUST** controls the level of the echo voices. Press Tap to synchronize the echoes with rhythmic material.
MODULATION EFFECTS

2.0 FSw2 Elevate
ADJUST: Feedback 0–99
Similar to Detuned Ekos, multiple echo voices with diffusion, modulation and a touch of plate reverb. In this effect, Foot Switch 2 is patched to turn on the AR Envelope which, in turn, sweeps the master delay. ADJUST controls the feedback of these rhythmic echoes.

2.1 Chorus & Pan
ADJUST: LFO Rate 0–100
This moving chorus shifts the output signal from left to right, back and forth. ADJUST sets the speed. Increasing the Delay Master parameter will smear the delay images.

2.2 Chorus & Amb
ADJUST: MstChorus 0–100
Similar to Chorus & Pan but with an added ambience. ADJUST controls the speed and depth of the chorus.

2.3 6 Vox Chorus
ADJUST: Less/More 0–50
Starting point for all chorus sounds. ADJUST controls both the chorus depth and speed. Use the Delay Master to open or close the spacing between the 6 delay voices.

2.4 Split C&E
ADJUST: InputPan 0–100
The left input is processed into a lush 3-voice chorus with the voice panners adjusted from center to left. The right input is processed into a rhythmic 3-voice echo with the output panned from center to right. ADJUST cross-panns the inputs. 0 = left/right stereo, 50 = mono, 100 = right/left stereo.

2.5 Env: Pan Korus
ADJUST: Chorus 0–127
The AR Envelope drives the speed of the pan based on the presence or absence of input signal. ADJUST varies the chorus amount.

2.6 6 Vox Flange
ADJUST: MstrDepth 0–100
A rich stereo flanger with a touch of reverb. ADJUST controls the flange depth.

2.7 Mod Max
ADJUST: Mod Knob 0–50
Multiple parameters all being modulated together. With a stereo input the LFO drives the input pans to each delay and reverb processor. A definite "twist your head off" effect. ADJUST controls several aspects of the modulation.

2.8 Precise Glide
ADJUST: Resonance 0–100
A very clean stereo gliding delay and reverb. ADJUST controls the resonance of the glide. Soft Row includes master delay and feedback parameters so you can add stereo echoes to the effect.

2.9 Round 147
ADJUST: RotorRate 0–20
Big wooden rotary speaker cabinet miked fairly close. ADJUST sets the speed of the rotors. FX Mix is available in the soft row to control the amount of reverb relative to the total effect output.

3.0 FSw2 Rotary
ADJUST: Width 0–100
A dual-rotor speaker cabinet with a very wide stereo spin and a touch of ambience. Use ADJUST to control the width and direction of the spinning rotors. 0 = very wide left-to-right, 64 = mono, 127 = very wide right-to-left. Foot Switch 2 is patched to the Latch to toggle between slow and fast speeds. The AR envelope is used to simulate the inertial drag as the rotors speed up or slow down.
PROGRAM BANK 0 (P0) (continued)

MODULATION EFFECTS (continued)

3.1 RotorCabinet ADJUST: Slow/Fast 0–1
Similar to FSw2 Rotor, but ADJUST is used to toggle the speed of the rotors between slow and fast. Soft Row parameters include FX Width which sets the width and direction of the spin.

3.2 MIDI Rotary ADJUST: EkoFbk 0–100
Similar to FSw2 Rotor, but with echoes added and the rotors patched up for MIDI control. MIDI After Touch toggles speed. Press hard to spin fast, press hard again to spin slow. ADJUST controls the amount of echo feedback. Use Tap to synchronize the echoes with rhythmic material.

3.3 Tiled Rotary ADJUST: Slow/Fast 0–1
The RotorCabinet effect in a tiled room. Try it with background vocals, as well as the usual keyboard and guitar sources. ADJUST toggles the spin rates between slow and fast.

3.4 RotoWood ADJUST: Speed 0–10
ADJUST quickly advances the speed of the rotors. Increase the Feedback Master for more upper rotor “howling”.

3.5 RandomImages ADJUST: ImageKnob 0–127
This effect works best with solo instruments or voices. Individual input notes come out at random locations in the stereo image. ADJUST varies delay time, adds chorusing, and turns up tempo related echo levels. Delays “creep” slowly out to new time values.

SPECIAL EFFECTS

3.6 Under Water ADJUST: DrownKnob 0–100
This effect really pulls you under! It will submerge any track under water. ADJUST controls the over all rate of the effect.

3.7 Thunder FX ADJUST: FlashTime 0–127
An unusual special effect that produces a rolling clap of thunder from a percussive source (tom toms, etc.) and ethereal sweeps from synth pads. The effect is driven by the AR Env, which is available in the soft row. ADJUST controls the AR release rate.

3.8 Thunder FX 2 ADJUST: FlashTime 0–127
A variation of Thunder FX. The zaps are produced by setting a much faster release rate. ADJUST controls the release rate.

3.9 ChaosImpuls ADJUST: GldResp 0–100
This special effect is hard to describe but interesting to listen to. It produces chaotic rhythms and detunings from the input source. ADJUST sets the chaotic limits. Try this with individual percussive hits.

4.0 DemonDescent ADJUST: GldResp 0–100
Dark reverb and modulated detuning are combined to create an eerie special effect. ADJUST controls the rate and depth of the detuning.

4.1 RoughIdle FX ADJUST: Speed 0–127
Use this to mutate any steady, broad band source into a poorly tuned combustion engine. ADJUST controls the speed.
4.2 RoxStutter
ADJUST: FX Mix 0–100
Use on those strong rock and roll lead vocals. The trailing echoes on voices 3 and 4 go longer as the signal disappears. **ADJUST** combines the delay effects with a plate reverb effect. Delays 2 and 5 are available in the soft row to add more echo presence.

4.3 Split Pitch?
ADJUST: SplitWide 0–127
Modulated varispeed in stereo. One side goes low as the other side goes high. **ADJUST** controls the rate and depth of the varispeed. Good for special FX processing of various sources including synths and dialog.

4.4 TryTalk’n
ADJUST: GldResp 0–100
A variation of Split Pitch? In this version highly colored reverb and additional delay voices have been added. **ADJUST** controls the rate and depth of the varispeed.

4.5 AutoInfinite
ADJUST: FX Mix 0–100
With signal present the reverb time runs long. With signal absent the infinite process is switched on. The threshold for the event is set high such that after a source is running in the infinite process, you can play softer passages against it which chorus and echo at the same time. **AR Envelope parameters** are included in the soft row. Adjust the threshold to suit your application.

4.6 Remove Cntr
ADJUST: Cntr Fc 0–127
This effect uses filters and crosstalk cancellation to remove mono material from a stereo mix. **ADJUST** controls a low pass filter for the center channel frequencies. As it is turned from 0-127 mono material is added back into the mix.

4.7 V-Eliminate
ADJUST: Cut Zone 0–127
This effect is a vocal eliminator. It is similar to Remove Cntr, in that it will remove mono material from a stereo mix. In this effect, however, only frequencies in the vocal range are removed. This keeps mono low and high frequencies (kick, bass, snare cymbals, etc.) in the mix. **ADJUST** controls the width of the elimination band. Note that phase cancellation will occur if the two outputs are summed to mono.

4.8 NoCenter Eko
ADJUST: Center Fc 0–127
This is the same effect as Remove Center with delays added to the processed signal. It allows you to add echoes to the left and right material without affecting the mono material of a stereo mix or sub mix. For example, you can add additional echoes to a mix without affecting the vocals, kick or snare. **ADJUST** controls a low pass filter for the center channel frequencies.

4.9 Rvb On L–R
ADJUST: Decay 0–127
Similar to NoCenterEko, this effect adds dense plate reverb to the left and right material without affecting the mono material in a stereo mix. **ADJUST** controls the mid Rt of the reverberator.
PROGRAM BANK 1 (P1)

RHYTHMIC ECHO AND DELAY EFFECTS

Note:
The echoes in all of the Rhythmic Echo and Delay effects can be synchronized to tempo. Tempo is set by dialing it in, pressing Tap, or selecting MIDI Clock as the Tempo. (Tempo mode 0.2) Be sure to try these effects synchronized with MIDI sequence and drum patterns.

0.0 [n]Ekos/Beat
ADJUST: [n] 1–24
This preset produces stereo echoes with a touch of reverb. ADJUST controls the number of echoes per beat. Soft Row goodies include controls for master scaling of the delay rhythms and feedback, EQ and panning, as well as reverb parameters.

0.1 StereoTapDly
ADJUST: Mstr Fbk 0–100
A variation of [n]Ekos/Beat this effect has left and right delay voices. ADJUST controls master feedback for both voices. The Soft Row includes controls for rhythm, feedback and panning for each voice.

0.2 OffBeat Eko
ADJUST: DarkKnob 0–127
This variation of [n]Ekos/Beat produces a syncopated echo rhythm pattern. ADJUST controls high cut filters in the echo feedback paths – great for “tape” echo effects.

0.3 OffBeat Eko2
ADJUST: DarkKnob 0–127
Additional rhythmic delay voices are used to create a more complicated syncopation pattern than OffBeat Eko. ADJUST controls high cut filters in the echo feedback paths – great for “tape” echo effects.

0.4 Dotted 8ths
ADJUST: EchoSlope 0–127
Rhythmic delay voices produce a dotted 8th-note pattern. ADJUST controls the slope of the first six repeats. 0 = loud to soft (normal echoes), 64 = six repeats of equal loudness, 127 = soft to loud (reversed echoes).

0.5 Shuffle Ekos
ADJUST: Shuf Lvl 0–127
This effect creates echoes with a shuffle feel. One repeat on the beat followed by one repeat off the beat. ADJUST controls the relative levels of the on-beat and off-beat echoes. 0 = on-beat echo only, 127 = off-beat echo only.

0.6 Shuffles
ADJUST: EchoSlope 0–127
Rhythmic delay voices produce a shuffle pattern. ADJUST controls the slope of the first six repeats. 0 = loud to soft (normal echoes), 64 = six repeats of equal loudness, 127 = soft to loud (reversed echoes).

0.7 Sliding Eko
ADJUST: Slide It! 0–100
This stereo delay effect lets you dial in the perfect “feel” to match the moment. Two echoes are produced. One is fixed on the beat. The other can be slid in musical time anywhere in front of or behind the beat by turning ADJUST. 0–49 = in front of the beat, 50 = on the beat, 51–100 = behind the beat. Of course, the Soft Row contains additional controls for fine tuning the effect.
0.8 Six Trips
ADJUST: EchoSlope 0–127
Rhythmic delay voices produce a six note triplet pattern. Each repeat gets progressively louder. ADJUST controls the slope of the first six repeats. 0 = loud to soft (normal echoes), 64 = six repeats of equal loudness, 127 = soft to loud (reversed echoes).

0.9 6 StrokeRoll
ADJUST: Attack 0–127
Turn a single drum hit into a six-stroke roll with this effect. ADJUST controls the attack of the first five repeats. 0 = loud to soft (normal echoes), 64 = five repeats of equal loudness, 127 = soft to loud (reversed echoes).

1.0 TapGated Rvb
ADJUST: Gate dB 0–85
This effect uses a tempo-controlled LFO as a rhythmic gate to the inputs of a large stereo chamber. The gate is opened every other beat for a duration of one eighth-note. Use this to add reverb to selected beats of a stereo source. (Try this one synchronized to MIDI with a drum machine as a source.) ADJUST controls the input levels in dB to the reverb when the gate is closed. 0 = always open (0dB), 85 = fully closed (-85dB). The Soft Row includes the LFO parameters so you can adjust the overall timing of the gate.

1.1 TapEkoGate 1
ADJUST: GateWidth 0–127
This effect uses a tempo-controlled LFO as a rhythmic gate to the inputs of a delay and reverb combination. The gate is opened once every four beats for a duration of one eighth-note. ADJUST determines the portion of the four beats in which the gate is open. 0 = open for all four beats, 127 = open for only the first 16th note of four beats. The Soft Row includes the LFO parameters so you can adjust the overall timing of the gate.

1.2 TapEkoGate 2
ADJUST: GateWidth 0–127
This is a variation of TapEkoGate 1 with different echo rhythms. ADJUST determines the portion of the four beats in which the gate is open. 0 = open four all four beats, 127 = open for only the first 16th note of four beats. The Soft Row includes the LFO parameters so you can adjust the overall timing of the gate.

1.3 TapEkoClear
ADJUST: GateWidth 0–127
This preset is similar to the two TapEkoGate presets, except that the rhythmic gate is also patched to clear the delay voices when it opens. This allows very high delay feedback values to be used without creating long echo trails. ADJUST determines the portion of the four beats in which the gate is open. 0 = open for all four beats, 127 = open for only the first 16th note of four beats. The Soft Row includes the LFO parameters so you can adjust the overall timing of the gate.

1.4 Tap Chamber1
ADJUST: Width 0–90
This preset is a tempo controlled variation of SnareChamber. The effect is a tight chamber with liveness that is constantly changing. The change is tempo controlled. Press Tap to synchronize it to the beat. ADJUST controls the width of the reverb within the overall stereo image of the effect (0 = mono, 45 = stereo, 90 = surround). Use this to open up sampled drum mixes.

1.5 Tap Chamber2
ADJUST: Decay 0–127
This is a version of Vox Chamber with a rhythmic twist. The width of the reverb, within the overall stereo image of the effect, is changed rhythmically by Sw 1. This change is tempo controlled. Press Tap twice to synchronize to the beat. ADJUST controls reverb decay.
Program Bank 1 (P1) (continued)

Rhythmic Echo and Delay Effects (continued)

1.6 Latched Ekos

ADJUST: EchoWidth 1–99

The inputs and outputs of stereo delays are gated on and off by two rhythmic switches. The Latch is used to trigger the AR envelope, which in turn alternates the left and right delay outputs. ADJUST controls how long the inputs to the delays remain open over a period of four beats.

1.7 X-PanEQ BPM

ADJUST: Low Tone 0–60

This effect cross-pans the inputs between independent left and right band pass filters and adds some bright, highly diffused reverb. The pan rate is tempo controlled. ADJUST controls the low frequency limits of both bands.

1.8 Pan->Eko BPM

ADJUST: DarkKnob 0–127

This effect pans the inputs across the stereo inputs of a reverb and independent left and right delays, each with slightly different EQ. The pan rate is tempo controlled. ADJUST controls the high frequency limits of both bands.

1.9 Tempo Verb

ADJUST: Liveness 0–40

In this tempo-based reverb effect, decay changes in tempo. Slow tempos yield longer reverb time; fast tempos result in shorter decay. Set tempo with two presses of Tap, or with MIDI.

2.0 Tempo Gate

ADJUST: High Cut 0–50

This heavily gated reverb effect has duration set by tempo. Tap in two quarter-notes to set the gate duration.

2.1 Tape Echo

ADJUST: DarkKnob 0–127

This preset simulates a stereo tape echo. The echo rate is tempo controlled. Press Tap to synchronize with rhythmic material. ADJUST controls high frequency damping – the echoes get darker as they repeat. The Soft Row includes parameters for adding and reverb as well additional controls for the delays and filters.

2.2 NonLinear 1

ADJUST: EchoSlope 0–127

This effect produces echoes with non linear decay. ADJUST controls the decay slope. 0 = loud to soft (normal echoes), 64 = six repeats of equal loudness, 127 = soft to loud (reversed echoes). In this preset the slope is set to produce a simple reversed echo effect. The repeat rate is tempo controlled. The Soft Row contains parameters for controlling the stereo image, adding reverb, scaling the repeat rate, and more.

2.3 NonLinear 2

ADJUST: EchoSlope 0–127

Similar to NonLinear 1, with some additional processing. Chorus and reverb have been added, and the delays bounce from side to side as they repeat. In this preset the slope is set to 64 to produce repeats of equal loudness. The Soft Row includes parameters for controlling the stereo image, chorus depth and rate, etc.

2.4 NonLinear 3

ADJUST: EchoSlope 0–127

This is a variation of NonLinear 2 with more radical processing and an inverted slope.

2.5 Six Across

ADJUST: Spacing 0–100

This multi-tap delay effect filters each voice to a specific bandpass with each tap positioned successively across the panoramic spectrum. ADJUST controls the overall spacing between the voices.
2.6 BandEko Rvb
ADJUST: Center Fc 0–127
In this preset, the outputs of a stereo band pass filter are sent to left and right rhythmic delays. These delays are in the reverb diffusor loop. The effect produces diffuse, highly colored echoes and reverb. Use **ADJUST** to set the center frequency of the band pass filter.

2.7 BandEkoSweep
ADJUST: Mstr Fbk 0–100
A variation of BankEko Rvb. The center frequency of the band pass filter is swept by the LFO producing echoes of shifting colors. Reverb and diffusion are turned off, but can be added from the Soft Row. **ADJUST** controls master feedback for the left and right delays.

2.8 LFO EQ Echo
ADJUST: LC Depth 0–100
A stereo rhythmic effect created by modulating low cut and high cut filters with the LFO sine and cosine waves. Interesting on rhythm tracks and individual instruments. **ADJUST** controls the depth of the low cut modulation.

2.9 Chase Echo
ADJUST: ChaseRate 0–100
This is LFO EQ Echo with panning added to the filtered delay outputs. **ADJUST** controls the pan rate.

3.0 Panned Dlys
ADJUST: Mstr Fbk 0–100
In this effect, a pair of delays are panned to produce echoes that drift across stereo space. **ADJUST** controls the feedback of both delays. More goodies await you in the Soft Row.

3.1 X-Pan Delays
ADJUST: Mstr Fbk 0–100
The outputs of the delay pair are cross-panned in this effect. Mono material will produce echoes that repeat, but remain in the center. Stereo material will slowly swap left and right as it repeats. Use **ADJUST** to set the feedback for both delays.

3.2 Dly>EQ>Pans
ADJUST: Mstr Fbk 0–100
The input signal is split into two frequency bands by this effect. The two bands are then sent through two different rhythmic delays whose outputs are panned in opposite directions. This effect deconstructs the tone of input material, except when the panning and delay rhythms align in the center of the stereo field. Try it with a drum mix or other broad band material. Use **ADJUST** to set the feedback for both delay voices.

3.3 Ekoz 4 Drums
ADJUST: FX Mix 0–100
This preset is a space setter for percussive instruments. It combines a short plate reverb effect with four high density echoes which are highly diffused. **ADJUST** varies the amount of delay effect to reverb effect.

3.4 Haas PanKnob
ADJUST: L=0, R=127 0–127
A panner that uses the slight differences in left and right channel delay to produce panning without changing relative levels. Use **ADJUST** to pan from left to right.

3.5 Dial a Delay
ADJUST: Delay 0–100
This one is your basic delay. Use **ADJUST** to dial-in up to 2.5 seconds of stereo delay. The Soft Row will take you beyond the basics, with parameters for reverb design, EQ and feedback.

3.6 PrecisionDly
ADJUST: L ms/100 0–100
Use this preset if you need precise alignment of left and right channel audio. **ADJUST** allows you to offset the left channel by up to 1 ms in 100 increments. The Soft Row contains two sets of additional delay controls for the left and right channels, each with 1ms resolution, as well as independent level and panning controls.
AMBIENCE EFFECTS

3.7 PhoneOrRoom? \(\text{ADJUST: Pick One} \quad 0–1 \)
Use ADJUST to choose between a mono telephone filter and a small room with stereo ambience. The Soft Row provides access to the filter controls as well as reverb design parameters.

3.8 CheapTV Room \(\text{ADJUST: The Walls} \quad 1–10 \)
This stereo preset simulates the sound of a Lo-Fi TV in a small room. Use ADJUST to change the reflectivity of the walls. The Soft Row provides access to filter controls and reverb design parameters.

3.9 Empty Stage \(\text{ADJUST: Liveness} \quad 0–100 \)
Made for creating live sounding spaces. ADJUST opens the space to be more reflective and airy.

4.0 Tomb Room \(\text{ADJUST: The Walls} \quad 1–10 \)
Use this ambience preset to place source material within a very reflective tomb. ADJUST moves the source deeper into this scary space.

4.1 Comb Room \(\text{ADJUST: Tone} \quad 0–100 \)
This effect provides a tunable comb filter and reverb to produce a highly colored ambience. Use ADJUST to change the tuning of the comb filter.

4.2 Zoom Over \(\text{ADJUST: Speed} \quad 1–25 \)
Run an effect (or even a continuous synthesizer drone) into this preset, and the sound will approach you from the center, spread out to the sides as it passes overhead, and recede into the distance behind you. ADJUST controls the speed of the fly-by. This effect will image properly in either 2-channel or Surround mixes.

4.3 OneShotCarBy \(\text{ADJUST: Speed} \quad 1–100 \)
Input level triggers this left-to-right drive-by. When signal is detected, it will move from left to right. Doppler pitch shift is simulated as the image moves across the stereo field. Use ADJUST to set the speed of the drive-by. Once audio has been detected, the effect will cycle once. To drive by again, stop and restart the audio track. To reverse the direction of the effect, set the Width parameter to –45 — you’ll find it in the Soft Row.

4.4 AmbientCarBy \(\text{ADJUST: Speed} \quad 1–100 \)
This is a variation of OneShotCarBy. In this preset the effect is enhanced with the addition of some stereo ambience. Also, in this variation the effect repeats automatically. ADJUST controls the speed of the drive-by.

4.5 HeadOn CarBy \(\text{ADJUST: Speed} \quad 1–100 \)
This preset uses less ambience than ZoomOver, and is more appropriate for things that approach on the road than in the air. ADJUST sets the speed of the effect. This effect will image properly in either 2-channel or Surround mixes.
4.6 2WayStreet
ADJUST: Speed 1–100
Another variation of AmbientCarBy. This preset produces both left-to-right and right-to-left drive-by effects — like listening to the sound of traffic on a two-way street. The speed for each direction is slightly different. ADJUST is a master speed control for both eastbound and westbound traffic.

4.7 IntoTunnel
ADJUST: Speed 1–25
This preset simulates the sound of a source approaching you from the side, passing you and then entering a tunnel. ADJUST controls the speed of the source. To reverse the direction of the effect, set the Width parameter to –45 — you’ll find it in the Soft Row.

4.8 2WayTunnel
ADJUST: Speed 1–100
This is a variation of IntoTunnel. The source approaches and enters the tunnel, then turns around and comes back. Use ADJUST to control the speed.

4.9 FinishLine
ADJUST: Speed 1–100
This preset adds two pairs of stereo delays to the basic drive-by effect to simulate the 1st, 2nd, and 3rd place cars crossing the finish line. ADJUST controls the speed. Be sure to try this and the other drive-by effects with different types of source material. Almost any continuous source will produce interesting spatial sound effects. Low, buzzy synthesizer tones work particularly well.

PROGRAM BANK 2 (P2)

EQ EFFECTS

0.0 StereoLoPass
ADJUST: CutOff 0–127
This effect is a combination of a stereo low pass filter and a stereo reverb, with the two effects in parallel. Use ADJUST to set the cutoff frequency of the filter. The reverb mix is turned all the way down — you can add reverb by changing the FX Mix parameter in the Soft Row, where you’ll also find additional parameters for delay voices, and image.

0.1 Low Pass HiQ
ADJUST: Cutoff 0–127
The same basic effect as StereoLoPass, but with feedback adjusted to produce a more resonant filter. ADJUST sets the cutoff frequency of the filter.

0.2 Low Pass LFO
ADJUST: Depth 0–127
The cutoff of the stereo low pass filter is swept with a rhythmic LFO sine wave. Press Tap to synchronize the sweep with rhythmic material. ADJUST controls the low frequency limit of the sweep.

0.3 StereoHiPass
ADJUST: Cutoff 0–127
A combination of a stereo high pass filter and a stereo reverb, with the two effects in parallel. Use ADJUST to set the cutoff frequency of the filter. The reverb mix is turned all the way down — you can add reverb by changing the FX Mix parameter in the Soft Row, where you’ll also find additional parameters for delay voices, and image.
Presets

PROGRAM BANK 2 (P2) (continued)

EQ EFFECTS (continued)

0.4 StereoB-Pass
ADJUST: Center 0–127
A combination of a stereo band pass filter and a stereo reverb, with the two effects in parallel. Use ADJUST to set the center frequency of the filter. The reverb mix is turned all the way down — you can add reverb by changing the FX Mix parameter in the Soft Row, where you’ll also find additional parameters for delay voices, and image.

0.5 Stereo Notch
ADJUST: Center 0–127
A variation of StereoB-Pass which combines a phase inverted output of the band pass filter with unprocessed signal to create a notch filter. ADJUST sets the center frequency of the notch.

0.6 SweptNotches
ADJUST: Rate 0–100
This preset produces vowel-like sounds by sweeping two pairs of notches with two independent time switches. This effect will produce very unusual tonal variations from broad band sources (rich pads, drums, industrial sound effects, etc.) It also generates a good deal of spatial movement within a stereo or Surround mix. ADJUST controls the rate of the sweeps.

0.7 Env Notches
ADJUST: Release 0–100
This preset will produce vocalization effects from dynamic sources. The inputs are summed to mono, and the notch filters which are tuned to vocal formats are swept by the resulting input envelope. ADJUST controls the release rate of the input envelope.

0.8 BandReject 4
ADJUST: FX Mix 0–100
Three independent modulators are used to sweep filters and pan the outputs of this preset. The result is an effect with constantly changing tonal and spatial characteristics. A touch of reverb adds some overall ambience. Use ADJUST to set the mix of filters and reverb.

0.9 WaaPedalEko
ADJUST: Feedback 0–10
Wah-wah with echoes. Foot pedal is patched to filter cutoff. ADJUST controls echo feedback.

1.0 RotorWaa
ADJUST: Rate 0–10
A tempo controlled wah-wah effect. ADJUST controls the rhythm of the modulator.

SPATIAL EFFECTS

1.1 Movable Echo
ADJUST: Position 0–127
This preset is designed for use with either stereo or Surround mixes. It is a dual delay effect that can be positioned anywhere between the center, side and rear channels. ADJUST sets the position. 0 = center, 64 = side channels, 127 = rear channel.

1.2 Movable Hall
ADJUST: Position 0–127
Like Movable Echo, this preset is designed for use with either stereo or Surround mixes. It is a concert hall reverb effect that can be positioned anywhere between the center, side and rear channels. ADJUST sets the position. 0 = center, 64 = side channels, 127 = rear channel.
1.3 Go Away ADJUST: How Far? 0–127
Use this preset to take a stereo source and move it anywhere from in your face to far, far away. Use ADJUST to move the source away from you. 0 = unprocessed stereo, 127 = far away. As ADJUST is increased, EQ, reverb and stereo width are all changed to produce the composite effect. This effect is compatible with stereo and Surround mixes.

1.4 Circular Pan ADJUST: Rate 0–100
Similar to Go Away, this preset sums the inputs to mono and uses the LFO to control EQ, reverb and stereo width to pan the sound through a circular orbit. From right through center, to left through rear, to right. As the sound approaches the center, it grows brighter, louder and dryer. As it recedes towards the rear, it grows darker, softer and more reverberant. In a Surround mix, the center and rear positions of the orbit will feed only the center and rear channels of the mix. ADJUST controls the rate of the pan.

1.5 Spatial Hall ADJUST: Position 0–35
A multi-dimensional preset which changes as you increase or decrease the ADJUST knob value. This preset is not mono compatible.

1.6 Rear of Hall ADJUST: Decay 0–60
This is a really huge space and you’re in the back of it. ADJUST changes the reverberation characteristics, making it boomier.

1.7 Backstage ADJUST: How Far? 0–127
Remember what the concert sounded like from the green room? If you need to re-create that ambience, this preset will take you there and let you wander around. Turn up ADJUST to travel further from the stage until, finally, you’re out in the parking lot. The Soft Row provides reverb parameters that will let you fine tune the the hall to fit your needs.

1.8 Steered Rear ADJUST: Decay 0–10
The Width parameter steers this plate effect from front to back after the AR releases based on input level. ADJUST controls reverb decay. Due to the strong spatial positioning at the end of the decay, this preset is not mono compatible.

1.9 Too Deep! ADJUST: Decay 0–40
The left and right envelope followers control the post delay glides while the AR generator controls reverb width. ADJUST controls reverb decay.

2.0 Dyna-Hall ADJUST: Decay 0–130
A tamer version of Too Deep! No envelope chorusing. Good, beautiful, straight ahead, and spacious.

2.1 RotoRox ADJUST: FX Mix 0–100
RotoRox crossfades deeper into two delay voices when the envelope follower detects an absence of input. Great vocal effects for thickly-produced rock and roll. ADJUST will add more or less reverb into the effects mix.
PROGRAM BANK 2 (P2) (continued)

SPATIAL EFFECTS (continued)

2.2 RotoRoomVox ADJUST: Decay 0–100
This medium large sized room continuously changes spatial width according to the speed of the LFO which tracks the input. Faster with less input, slower with more input. ADJUST controls reverb decay. Nice roomy effect for background vocals.

2.3 RotoRoom ADJUST: Decay 0–60
Similar to RotoRoomVox except the speed of the spatial width modulation is stable, with the speed of the LFO constant. Room is smaller, more dense-sounding and brighter.

2.4 RotoRoom#2 ADJUST: Rt & Rate 0–60
Speed and reverb decay are tied to ADJUST. Way cool on a stinger sound effect! Dynamically spacious and not mono compatible.

2.5 Tremolo Tap1 ADJUST: Depth 0–127
This is a basic tremolo effect with a small amount of ambience added. The effect is true stereo. The left and right channels are processed separately to maintain the image of stereo source material. The tremolo rate is tempo controlled (2 cycles/beat). Press Tap to synchronize the effect with rhythmic material. ADJUST sets the tremolo depth. 0 = no tremolo, 127 = maximum tremolo.

2.6 X-TremoloTap ADJUST: Depth 0–127
This a variation of TremoloTap1. In this preset the left and right modulation are 90° out of phase, producing a stereo effect that doesn’t collapse in a mono mix. If the input source is mono, the sound will seem to move from side to side. If the input source is stereo (or two different mono sources) the left and right channels will alternately grow loud and soft. The modulation rate is tempo controlled. ADJUST controls the tremolo depth for both channels. 0 = no tremolo, 127 = maximum tremolo.

2.7 Panner BPM ADJUST: Pan Phase 0–1
This effect is a tempo controlled auto panner with the inputs independently panned left and right. ADJUST allows you to set the relative phase of the input panning. 0 = in phase, 1 = 90° out of phase. In the preset, the panning is 90° out of phase. If the input source is stereo it will pan from side to side. If the input source is stereo (or two different mono sources), the two sources will chase each other between the speakers. Set ADJUST to 0 for “normal” auto panning.

2.8 Nice Pan! ADJUST: FX Mix 0–100
This preset combines static time based delays which move back and forth in the stereo field with a short, bright chorus plate. ADJUST varies the delay and reverb mixing. Great for acoustic guitars.

2.9 Spin & Duck ADJUST: Spin Rate 0–127
In this preset, panning is combined with 6-voice chorus delays and reverb to produce a rich spacious effect. ADJUST controls the panning rate. 0 = slow, 127 = fast. The delays are tempo controlled and ducked by input level. They won’t be heard during active passages, but will fade up in the spaces between phrases.
The AR envelope is used to create a moderate fade-in of chorus, delay and reverb effects. ADJUST controls the mix of chorus/delay and reverb. The Soft Row has all the essentials for tweaking the three basic effects, and the AR envelope parameters so you can fine tune the fade in rate and threshold. Try this with guitars and keys.

3.1 Ghost
ADJUST: FadeShape 0–100
Source material is accompanied by a ghostly image of itself. Not quite reverb, not quite backwards audio. ADJUST controls the contour of the fade in of the effect. This preset works well with short percussive sources as well as more sustained ones.

3.2 Ghost Flange
ADJUST: FadeShape 0–100
This is a variation of Ghost with some flanging added. Try this with lead guitar. ADJUST controls the contour of the fade in.

3.3 Ghost Vibrato
ADJUST: FadeShape 0–100
Another Ghost variation. This one will produce a delayed vibrato on sustained notes. ADJUST controls the contour of the fade-in.

3.4 AutoFadeIn 1
ADJUST: FX Mix 0–127
This preset senses input level to produce an automatic volume swell into a chorus/delay reverb effect. Sounds great with guitar and keyboard chords. The fade in rate is moderate. ADJUST controls the mix of chorus/delay and reverb effects. The Soft Row includes parameters for all three effects as well as the envelope parameters which set the characteristics of the fade-in.

3.5 AutoFadeIn 2
ADJUST: Fade Rate 0–100
This variation of AutoFadeIn allows you to set the fade-in rate with ADJUST.

3.6 AutoFadeIn 3
ADJUST: Rvb Lvl 0–127
This variation of AutoFadeIn 1 has shorter delay times and a lighter touch on the chorus effect. ADJUST sets the mix of chorus/delay and reverb effects.

3.7 ChordSwells
ADJUST: Rvb Lvl 0–127
A more dramatic version of AutoFadeIn. The fade time is quite long, and the chorus and delay effects are fairly strong. Try it with sustained piano or guitar chords. ADJUST controls the mix of chorus/delay and reverb.

3.8 BowedChords
ADJUST: FX Mix 0–100
A more subtle version of AutoFadeIn. Chorusing is turned off and delays are more subdued. This is essentially a volume swell into reverb. Use it to pull cello-like tones from sustained notes or block chords. Very nice with grand piano. ADJUST sets the mix of clean echoes and reverb.

3.9 BowedEchoes
ADJUST: FX Mix 0–100
In this preset, input level controls echo feedback as well as triggering the fade-in. Feedback is reduced when the signal is loud and turned up when the signal fades out. This produces echoes with soft attacks that appear when the input signal drops. ADJUST controls the mix of echoes and reverb.

4.0 Pedal Swell
ADJUST: FX Mix 0–100
This is a combination of four 400 ms delays, a slight amount of chorus, and just a hint of reverb. The foot controller is controlling the left and right input levels which allows you to get majestic volume swells. ADJUST controls the combination of delays and chorus with reverb.
PROGRAM BANK 2 (P2) (continued)

RESONANT CHORDS EFFECTS STET

4.1 Rez Climber ADJUST: Tuning 0–60
Try this preset with dialog or unpitched source material. It is a special effect that dynamically sweeps the resonators through the 2nd, 3rd, 4th and 5th pitches of the harmonic series. The sweep is controlled by the AR Env, which is triggered by mono input level. ADJUST sets the fundamental pitch for the series.

4.2 Chord Walk ADJUST: High Cut 0–50
This preset uses the resonators to generate a rhythmic chord pattern from unpitched source material. ADJUST controls the high frequency content of the chords. The time switches, Sw 1 and Sw 2 are used to change the chord root-note and mode and also vary the rhythm. Listen to this effect with a simple kick, snare and hi-hat pattern as an input source. Press Tap twice to synchronize the tempo of the effect with the tempo of the drum pattern.

4.3 Mars Bars ADJUST: High Cut 0–50
In this preset, the resonators are used to create a truly weird and spacey special effect. Use any continuous sound effect, dialog, or even instrumental tracks as source material. The tuning of the resonators is swept slowly through a series of pitches by the LFO. The resulting sound is quite unusual (an orchestra from another planet?). ADJUST controls the overall high frequency content of the effect. Be sure to check out the Soft Row, which contains parameters for tuning, voice assignment and more.

4.4 ModallImpulse ADJUST: Tone 0–50
The resonators in this preset are tuned to arpeggiate a modal 7th chord. ADJUST changes the overall tone of the arpeggiated notes. The rhythm of the arpeggio is tempo controlled. Press Tap twice to synchronize it to the beat. The effect works well with single percussion hits (try it with kick or snare). You can change the key, scale, and root note of the arpeggio by playing with the Pitch sub parameters in the Soft Row. You’ll also find controls for reverb and delay there as well.

4.5 Major Minor ADJUST: Tone 0–50
This effect in this preset builds a 6-note modal chord one note at a time. Use a single percussion hit as an input source (a slowly repeating snare hit works well). The notes in the chord are added slowly over 24 beats. The effect is tempo controlled. Press Tap twice to synchronize it to the beat. ADJUST changes the overall tone of the chord notes. As the chord builds, it is changed rhythmically between major and minor scales. The root note of the chord is also changed in a rhythmic manner. The LFO controls the rate of the build and the major minor shift. Switch 2 controls the changing root notes.

4.6 MIDIChords ADJUST: Sparkle 0–5
4.7 LevelSweeper ADJUST: Color 0–24
This preset is driven by level. Any input that exceeds the input threshold will cause a little burst of resonators that quickly swirl through the stereo field. ADJUST controls the pitch range of the resonators.

4.8 Sweeper ADJUST: Pitch 0–24
This preset is a resonant arpeggiator in which a tempo-driven LFO controls the resonator pitches. ADJUST controls the pitch range of the arpeggio effect.

4.9 MIDI Sustain ADJUST: Bright 0–5
This preset requires MIDI note input or it will not pass audio. Resonators are assigned as the notes are played (when playing chords, it's best to spread them a little). Footswitch 2 works like a piano damper pedal. When the audio source is the same as the MIDI source, the effect is a little like playing a piano while holding down the pedal. When the audio source is different, well ... ADJUST controls the brightness of the resonators.

PROGRAM BANK 3 (P3)

REVERB EFFECTS

0.0 Small+Stage ADJUST: Stage Lvl 0–50
This preset combines a smooth, small reverberant space with several stage reflections. Use ADJUST to set the stage reflection level.

Presets

0.1 Small Room ADJUST: Liveness 0–60
Use ADJUST to quickly change the ambient characteristics of this typically tight sounding room. Great for ADR work.

0.2 Living Room ADJUST: Decay 0–60
Another ADR preset, medium spaced but with a short Rt. ADJUST quickly changes if not perfect for your application.

0.3 Brick Kick ADJUST: Liveness 0–100
Kicks *ss on kick drums or the entire submix. ADJUST increases the liveness of the chamber.

0.4 Large Room ADJUST: Decay 0–60
A perfectly smooth listening room with medium diffusion. Very natural sounding on any sound source. ADJUST lengthens or shortens the reverb decay.

0.5 Snare Chamber ADJUST: Liveness 0–60
Like Brick Kick, ADJUST increases the liveness of the space. A classic from the PCM 70.

0.6 Tiled Room ADJUST: Decay 0–60
A future classic... ADJUST controls reverb decay.

0.7 Rich Chamber ADJUST: Decay 0–60
Smooth and full sounding. ADJUST varies reverb decay.
0.8 Vox Chamber
ADJUST: Liveness 0–60
Combines recirculating echoes which fall away quickly once signal is absent. Increasing ADJUST lengthens the reverb decay, which will mask the reflection echoes. For vocals.

0.9 Locker Room
ADJUST: Depth 0–127
Just like in high school. ADJUST creates a deeper, more reverberant sound.

1.0 Wide Chamber
ADJUST: Decay 0–60
Big and wide sounding with a preset short Mid Rt. ADJUST will change that if necessary. Use on synth pads or vocals.

1.1 Gate Chamber
ADJUST: Duration 0–64
Bright, moderately dense reverb envelope with an abrupt cutoff. ADJUST sets the length of the gate.

1.2 Vox Plate
ADJUST: Decay 0–30
Bright, straight ahead preset for vocals with some added strengthening reflections. ADJUST controls the reverb decay for just the right sound.

1.3 Good ol’ Plate
ADJUST: Decay 0–60
Preset for the old plate you might have heard years ago. The reverb effect is slightly mono. ADJUST sets reverb decay.

1.4 Slap Plate
ADJUST: Decay 0–60
Added reflections to a medium sized plate. Vary the Delay Master in the soft row to increase the delay time. ADJUST sets reverb decay.

1.5 Brass Plate
ADJUST: Decay 0–60
A dark heavy plate with ADJUST controlling reverb decay. Good for percussion or pianos.

1.6 Drum Plate
ADJUST: Decay 0–60
Short and percussive for a drum sub-mix. ADJUST sets reverb decay.

1.7 Rich Plate
ADJUST: Decat 0–60
Straight ahead basic Plate sound. ADJUST sets reverb decay.

1.8 Concert Wave
ADJUST: Wave Knob 0–40
Wavey spacious sound. Nice on long sustained sounds. ADJUST cranks the waviness of the decay.

1.9 Concert Hall
ADJUST: Decay 0–100
New and improved — pianos, voice, and other acoustic instruments sound great through this preset.

2.0 Concert Hall2
ADJUST: Empty/Fully 0–15
This rather large concert hall space contains a couple of reflections to reinforce the source before the onset of reverberation. ADJUST changes the absorption characteristics from an empty space to a fully occupied concert hall at performance time.
2.1 Piano Hall ADJUST: Decay 0-60
Piano Hall is a long and smooth rolling preset with just the slightest hint of modulation. ADJUST controls the Mid Rt. Reduce the depth parameter if you want to sharpen the attack of the reverb.

2.2 Medium Hall ADJUST: Decay 0–60
Smaller version of the Concert Hall preset. ADJUST gives you a wide range of Mid reverb times. Great for vocals and acoustic instruments. Use the predelay parameter to separate the source from the acoustic space.

2.3 Vocal Hall ADJUST: Decay 0–60
Combines tempo related early reflections and longer tempo related post delays. Great for ballads. Use ADJUST to lengthen or shorten the reverb tail. Modifying the Post Delay Mix will strengthen or lessen the longer post delays. Tap in a couple of quarter-notes to set the tempo.

2.4 Deep Space ADJUST: FX Mix 0–100
Imagine a narrow space which snakes on forever. This dynamic preset goes from bright to dull while the speed of the width modulation changes as well. ADJUST varies the echo-to-reverb content. Sound effect worthy!

2.5 Plate4 Horns ADJUST: Impact 0–100
Bright and percussive for those horn tracks needing that certain edge. Use ADJUST to modify the attack and release characteristics.

2.6 Alley Slap ADJUST: Pre Delay 0–100
Great for any punctuated sound source – vocals, guitars, anything. Use ADJUST to match the delay to the music.

2.7 Drum Gate ADJUST: Duration 0–70
This inverse gated preset is low on diffusion and high on attitude. Made for drums and other high impact sources. ADJUST controls the duration of the effect.

2.8 Slope Down ADJUST: Duration 0–100
Very inverse sounding effect. ADJUST varies the length of the slope. The AR Envelope, triggered by mono level, cranks in a downward spiraling pitch shift. Unearthly on voices.

2.9 BigBoomRoom ADJUST: BoomKnob 0–36
The Envelope followers glide the left and right post delays giving a strong modulation effect to the reverb tail. ADJUST adds more or less boom. Use on punchy low frequency sound sources.

3.0 Whammy Hall ADJUST: Decay 0–30
If your guitar doesn’t have a whammy bar, it does now. The AR generator is triggered from the mono level source. The AR generator is then attached to the LFO depth which drives the two Post Delays after the reverb. The Release constant is set rather long so that the depth reaches full scale after 2.2 seconds. ADJUST sets the reverb time.

3.1 JetChamber ADJUST: Jet Knob 0–127
A big chamber reverb with stereo flanging on the outputs. Use ADJUST to set the amount of “whoosh.” The rate of the flange is controlled by the LFO. You’ll find it in the Soft Row along with the essential reverb parameters.
Presets

PROGRAM BANK 3 (P3) (continued)

PROCESSED REVERB EFFECTS (continued)

3.2 EnvChamber ADJUST: Jet Knob 0–127
Similar to JetChamber, but here flanging is controlled by input level. The flange effect is most prominent when the input level drops. This lets you process drums with little or no reverb flanging while they are active, but individual hits and fills will have pronounced flanging during the reverb tail. This also works well with a variety of sources including acoustic guitar and piano.

3.3 Wizz and Wazz ADJUST: Decay 0–127
This tempo driven effect has delays that whiz from left to right. FX Mix is also linked to tempo, going slowly from delays to reverb, then abruptly back to delays. ADJUST controls reverb decay.

3.4 Sci Fi ADJUST: Wiggle 0–127
This preset uses an LFO modulated reverb for its basic effect. ADJUST controls the depth of the modulation. It will put a big spacious halo around unpitched sources, like drums. Lower settings of ADJUST will work best with pitched sources, although higher settings can yield some interesting sound effects. (Listen to a high piano note with ADJUST at about 100 — definite science fiction material!)

3.5 Wobble Plate ADJUST: Wobble 0–30
A different type of chorus plate. ADJUST controls glide response.

3.6 Dyna Vibrato ADJUST: Glide 0–127
Input level triggers a delayed vibrato. The vibrato is created by modulating two pairs of gliding delays. ADJUST controls the offset between the delay pairs. Use it to thicken up the effect. You’ll find parameters to change the modulation depth and add reverb in the Soft Row. A nice effect to sweeten up acoustic guitar, dry sampler or synth tracks, etc.

3.7 VibroVerb ADJUST: V-Depth 0–127
In this effect, the reverb is processed to produce a vibrato that wanders slowly between two rates. ADJUST sets the depth of the vibrato. 0 = none, 127 = maximum. Low settings of ADJUST work nicely to open up the space around backing tracks. Higher settings can be used to add character to dry synthesizer tones, guitar and piano. Check out the Soft Row for parameters that you use to change the overall sound of the reverb.

3.8 SweepVerb ADJUST: GldResp 0–100
The left and right reverb outputs are detuned in opposite directions by the AR, which is triggered by input level. ADJUST controls the amount of detune. To open up the space around percussive sources, use very low settings of ADJUST. Higher settings will produce radical pitch swoops in the reverb. The Soft Row contains several useful reverb parameters.

3.9 EnveloVerb ADJUST: Rt HC 0–40
Great on sustained and slowly fading sound sources. The AR generator controls the Reverb output as well as the Reverb time. ADJUST controls the high frequency response of the reverb tail.
REMIX EFFECTS

4.0 Super Ball
ADJUST: Bounce It 0–1
This preset will let you turn any source into a bouncing ball. Run a track or instrument, click ADJUST to 1 and back to 0 and sit back. The effect captures a stereo sample on the fly, loops it and decreases the loop size as it repeats. (Reverb is added while the loop plays.) When the loop size gets to zero, the effect resets and starts sampling the inputs again. The loop size is tempo controlled. Press Tap to synchronize it with rhythmic material.

4.1 LevStutter
ADJUST: Mstr Fbk 0-100
Delays are driven by input level (high level = shorter delays). The delays are also driven by tempo. Works best for deconstructing dialog, but is also interesting with any audio with lots of holes.

4.2 Freeze 2 of 8
ADJUST: Feedback 0–100
This stereo preset automatically freezes 2 beats out of every 8. Press Tap to synchronize the effect with the source material. ADJUST lets you set the feedback level when the loop is off. Be sure to try this one with a dance mix, or MIDI drum patterns.

4.3 Freeze 2over3
ADJUST: Feedback 0–100
A slightly more diabolical version of Freeze 2 of 8. This preset also loops 2 out of every 8 beats, but the left and right delays are set to different rhythmic values. The result is a 2 against 3 pattern that alternates between the left and right channels. ADJUST sets the feedback for both delays while the loop is off.

4.4 Freeze&Speed
ADJUST: Freeze It 0–1
This preset allows you to grab and freeze portions of the source material on the fly. Click ADJUST from 0 to 1 to freeze the loop. It will repeat infinitely, but will grow more diffused as it repeats. Click ADJUST back to 0 to turn the loop off. The loop will speed up for a short time before turning off. The AR Release parameter (found in the Soft Row with other goodies) sets the speed-up time. The loop size is tempo controlled. You can change it on the fly by pressing Tap while the loop is off.

4.5 ADJToFz
ADJUST: Freeze It 0–1
Click ADJUST to create an infinite stereo loop of the input source. Click it again to stop the loop. A little reverb is added while the loop is on. The loop size is tempo controlled. Change it on the fly by pressing Tap while the loop is off. The preset is set to freeze 1 beat, but you can set any rhythm you want by changing the Soft Row delay parameter values.

4.6 ADJToFz2
ADJUST: Freeze It 0–1
The same basic loop effect as ADJToFz, but the delays are set to different values for the left and the right side. In this preset a 2 against 3 pattern will be created.

4.7 FSw2 Freeze
ADJUST: Feedback 0–100
A very useful infinite delay effect. Press Tap to establish the tempo. Use ADJUST to set the feedback level. Foot switch 2 is patched to turn infinite repeat on and off.
PROGRAM BANK 3 (P3) (continued)

REMIX EFFECTS (continued)

4.8 FSw2 Speedup ADJUST: How Long? 0–100
Footswitch 2 is patched to turn on an infinite loop while it is held down. When the foot switch is released, the loop continues but grows shorter with every repeat until the loop size is 0. Use ADJUST to set the amount of time it takes for the loop to shrink to nothing. A footswitch must be connected to make this preset work.

4.9 LongestLoop ADJUST: FX Mix 0–100
This preset uses the cross-feedback path in the delay voices to create a 5-second mono loop. Footswitch 2 is patched to turn infinite repeat off and on and, at the same time, to change the mix from 0 % to 100 % wet. Foot switch 1 is patched to clear the delays. ADJUST sets the reverb level for the loop. 0 = no reverb, 127 = all reverb. The Soft Row contains the parameters for setting the master delay for the loop as well as several reverb parameters. A footswitch must be connected to make this preset work.

PROGRAM BANK 4 (P4)

Note:
Most of the Pitch presets in Banks 4 and 5 are set to 100% wet. To hear the harmony/detune in many presets, dry signal should be added from the mixer. If the PCM 81 is connected in line, adjust the Pitch FX Mix parameter (Control 0.0) to add some dry signal.

VOCAL SHIFT

0.0 FixYerVox ADJUST: Offset 0–100
Turns your marginal singer into a rock n’ roll star. Bounce vocals to another track and fix the pitch on the fly. Stereo In/Stereo Out. ADJUST provides +100 cents of offset to correct other intonation.

0.1 FixYerVoxChm ADJUST: Offset 0–100
Similar to FixYerVox with an added vocal chamber for occasions when you run out of tracks and need to fix the pitch while you mix. Stereo In/Stereo Out.

0.2 ThickFixVox ADJUST: Thickness 0–50
Similar to FixYerVox with stereo detuning for occasions when you run out of tracks and need to fix the pitch while you mix. Stereo In/Stereo Out. ADJUST controls the amount of detuning, in cents.

0.3 Cocomo ADJUST: Thickness 0–100
The inputs are detuned. The left is delayed 31ms, the right is delayed 47ms. ADJUST controls the amount of + and – detuning in cents. Stereo In/Stereo Out.

0.4 QuadDTune ADJUST: Tune Knob 0–100
Fatten up vocals with four pitch shift voices panned across the stereo field. ADJUST sets the amount of detuning. (Two voices go sharp, two go flat.)

0.5 ADTStereoIn ADJUST: LFO Rate 0–100
The left input is pitch shifted up, the right input is shifted down. An LFO modulates the pitch from 2-12 cents. Stereo In/Stereo Out. ADJUST controls the LFO rate from 0-25Hz.
0.6 TripleTrack ADJUST: Separate 0–100
Adds two vocal tracks. ADJUST controls how closely the pitch
shifted voices track the pitch and timing of the input track.

0.7 Quad Track ADJUST: Separate 0–100
Similar to TripleTrack, this preset adds a third doubling to the orig-
inal track. ADJUST controls how tightly the three shifted voices
track the original.

0.8 Quint Track ADJUST: Separate 0–100
Makes one voice sound like five by adding four double tracks to the
original. Each one is slightly out of time and out of tune with the
others. ADJUST controls how tightly the shifted voices track the
original.

0.9 Add Voices ADJUST: How many? 1–4
A variation of QuintTrack with ADJUST adding more doublings to
the original. 1=1 voice with slight detune, 2=2 voices, 3=3 voices,
4=4 voices.

VOCAL HARMONY

1.0 Major Thirds ADJUST: Inversion 0–4
This preset allows you to treat the input note as the root or third in
major third harmony. ADJUST lets you select the inversion. 0=slight
detune, 1=sixth below, 2=third below, 3=third above, 4=sixth
above.

1.1 Minor Thirds ADJUST: Inversion 0–4
This preset allows you to treat the input note as the root or third in
minor third harmony. ADJUST lets you select the inversion. 0=slight
detune, 1=sixth below, 2=third below, 3=third above, 4=sixth
above.

1.2 Major Triads ADJUST: Inversion 0–6
The input note can be harmonized as the root, third or fifth of a
major chord. ADJUST selects the harmony and inversion. 0=slight
detune, 1=input is root (1st inversion), 2=input is root (2nd
inversion), 3=input is third (1st inversion), 4=input is third (2nd
inversion), 5=input is fifth (1st inversion), 6=input is fifth (2nd
inversion).

1.3 Minor Triads ADJUST: Inversion 0–6
The input note can be harmonized as the root, third or fifth of a
minor chord. ADJUST selects the harmony and inversion. 0=slight
detune, 1=input is root (1st inversion), 2=input is root (2nd
inversion), 3=input is third (1st inversion), 4=input is third (2nd
inversion), 5=input is fifth (1st inversion), 6=input is fifth (2nd
inversion).

1.4 Major & Dbls ADJUST: Inversion 0–4
The input note is doubled and also harmonized as the root of a
major triad. ADJUST selects the inversion of the chord.

1.5 Minor & Dbls ADJUST: Inversion 0–4
The input note is doubled and also harmonized as the root of a
minor triad. ADJUST selects the inversion of the chord.
PROGRAM BANK 4 (P4) (continued)

VOCAL HARMONY (continued)

1.6 4ths & Dbl ADJUST: Inversion 0–4
The input note is doubled and also harmonized as the root of chord made of four perfect fourths. ADJUST selects the inversion of the chord.

1.7 MIDI Pitch ADJUST: Rvb Mix 0–100
Use this preset to harmonize source material via single notes played on a MIDI keyboard. The amount of pitch shift is determined by the size of the interval played above or below middle C. ADJUST allows you to mix in some reverberation. Note that the audio source should not be the same source used to generate the MIDI notes.

1.8 MIDI Harmony ADJUST: Rvb Mix 0–100
This is a useful variation of MIDI Pitch. Play two notes at once on a MIDI keyboard to add two voices to the input note to create three part harmony. The harmonies are relative to middle C. ADJUST allows you to mix in some reverb. Note that the audio source should not be the same source used to generate the MIDI notes.

1.9 MIDI Chord ADJUST: V2 Pitch 1–25
A variation of MIDI Pitch that allows you to create four part harmonies. You can add two notes to the input note from a MIDI keyboard and dial-in an additional fixed harmony with ADJUST which provides 1 octave up or down in half steps. Note that the audio source should not be the same source used to generate the MIDI notes.

GUITAR MAGIC

2.0 SingleDetune ADJUST: 10=unison 0–20
A high quality detuner. ADJUST shifts pitch up or down 10 cents. Detune is at unison when ADJUST=10.

2.1 DualDetune ADJUST: cents +/– 0–100
A classic guitar effect. Two pitch shifters are used to spread out and thicken up the sound. ADJUST controls the amount of shift in cents. One side shifts up, the other shifts down.

2.2 Phat Detune ADJUST: TuneKnob 0–100
A classic detune effect with two additional voices. The four voices are panned across stereo space to really widen up the sound. ADJUST controls the overall amount of detuning.

2.3 EGtrPitchRm ADJUST: Fbk Mix 0–50
This preset produces a rich, room-like halo around every note. Sounds like reverb, but it’s not. How can you tell? Choke off a note and you’ll hear that there’s no decay. The effect is created by using pitch shifted echoes with cross feedback. The input level controls the amount of cross feedback. When the input dies out, the X-feedback goes to 0. ADJUST lets you dial some back in.

2.4 VibroShift1 ADJUST: Rate 0–100
A simple unison vibrato. ADJUST controls rate. Mix with the original signal for chorusing or use 100% wet for straight vibrato.

2.5 VibroShift2 ADJUST: Rate 0–100
Similar to VibroShift1 with a touch of octave down vibrato. Nice on single notes or chords.
Presets

2.6 VibroTrem
ADJUST: Rate 0–100
Pitch shift vibrato and out-of-phase tremolo combined to create a new take on a retro sound. ADJUST controls the rate of the throb. For the fullest effect, don’t mix any dry signal with the PCM 81 output.

2.7 VibroTremRvb
ADJUST: Rate 0–100
Another cool take on a vintage effect with reverb added between the vibrato and the tremolo. Play some chunky chords and listen to the verb pump. ADJUST controls the rate.

2.8 OctDown Verb
ADJUST: Oct Mix 0–100
Great with muted single note licks and runs, this preset also works well with chords. The reverb is fed by a unison vibrato and an additional vibrato shifted down one octave. ADJUST controls the mix of the unison and octave. 0=unison only, 50=unison and octave down, 100=octave down only.

2.9 PitchSlapRvb
ADJUST: Rvb Tune 0–100
This preset delivers a tight reverb slap after each note. The trick here is that you can tune the reverb sharp relative to the original note. ADJUST controls the reverb tuning — a little goes a long way.

INSTRUMENT SHIFT & HARMONY

3.0 24 String
ADJUST: 8va Level 0–100
Fatten up your 6-string with both detuning and an octave up. Stereo In/Stereo Out.

3.1 HonkyTonkPno
ADJUST: Delay 0–100
Go West, young man, to the frontier...and don’t forget the pretzels and beer. Stereo In/Stereo Out.

3.2 PowerNotes
ADJUST: 5ths Lvl 0–100
This preset is tuned up to give you a power chord when you play a single note. Each note is doubled at the unison and at an octave down. ADJUST lets you tune in two fifths — one below and one above the input note.

3.3 4-NoteChords
ADJUST: Inversion 0–6
This preset treats the input note as the root or fifth of a major seventh, minor seventh or dominant seventh chord. ADJUST lets you select the chord and the inversion.

3.4 ModalChords1
ADJUST: Mode 1–8
This preset will produce four-note chords relative to the input note. ADJUST selects the chord. The chords are voiced in parallel, each chord in root position.

3.5 ModalChords2
ADJUST: Mode 1–8
A variation of ModalChords1 with the chords voice-led in close position to minimize the amount of pitch shifting required to produce each chord.

3.6 Chromatic Up
ADJUST: HalfSteps 0–12
Straightforward and simple, ADJUST lets you tune any chromatic interval up to an octave above the input note.
PROGRAM BANK 4 (P4) (continued)

INSTRUMENT SHIFT & HARMONY (continued)

3.7 Chromatic Dn
ADJUST: HalfSteps 0–12
This variation lets you dial in any chromatic interval down to an octave below the input note.

3.8 FootPdl Oct
ADJUST: Up / Down 0–1
Designed to be used with a foot pedal. When connected, it produces a whammy bar slide up or down one octave. ADJUST sets the direction of the slide. 0=up, 1=down.

3.9 FootPdlChord
ADJUST: UnisonMix 0–100
Designed to be used with a foot pedal. In this case, the pedal slides two voices from unison to a major sixth (a fourth below and major third above the input note). ADJUST allows you to mix in the original note so you can pedal-slide major chords.

PERCUSSION & TEMPO

4.0 SnareTools 1
ADJUST: Crack 0–100
Natural snare reverb with ADJUST providing “crack” control. Detune is added to the original input before both are sent to the reverb. FX Mix controls the blend of dry vs. pitched signal to achieve optimal “crack”. Stereo In/Stereo Out.

4.1 SnareTools 2
ADJUST: Crack 0–100
Trippy backwards effect. Reverb feeds the pitch shifter. Mono In/Stereo Out.

4.2 SnareTools 3
ADJUST: Crack 0–100
Inverse snare reverb with “crack” control via ADJUST. Detune is added to the original input before both are sent to the reverb. FX Mix controls the blend of dry vs. pitched signal to achieve optimal “crack”. Mono In/Stereo Out.

4.3 TomTomTools
ADJUST: Booom! 0–100
Turns oatmeal boxes into cannons. Stereo In/Stereo Out.

4.4 Slap Up BPM
ADJUST: pitch 0–100
A tuned percussion plate with a slap predelay. Great for unpitched percussion. Use ADJUST to tune the pitch of the reverb above the pitch of the percussion.

4.5 Slap Dn BPM
ADJUST: pitch 0–100
A variation with ADJUST tuning the reverb below the pitch of the percussion source.

4.6 Thick Slap
ADJUST: detune 0–100
This preset detunes the reverb above and below the original source. A great alternative for thickening drum sounds.

4.7 RepeatSlaps
ADJUST: Fbk 0–100
Pitched reverb echoes produce arpeggios. Try this with any short percussive track for an interesting effect. ADJUST controls the amount of feedback (decay of the arpeggio).

4.8 AutoScratch
ADJUST: Rvb Mix 0–100
Run a rhythm bed or drum machine into this preset and it will “scratch it” in tempo. ADJUST adds reverb. Press Tap twice to lock in the rhythm.
Presets

4.9 Stop n Go
ADJUST: Rvb Mix 0–100
A more radical version of AutoScratch.

PROGRAM BANK 5 (P5)

SCI-FI FX

0.0 PullThePlug!
ADJUST: Off/On 0–1
Use this special effect to simulate the sound of a tape machine, juke box (etc.) running down when the power has been cut off in the middle of a tune. Turn ADJUST from 1 to 0 to cut the power, and from 0 to 1 to turn it back on.

0.1 Stargate
ADJUST: Velocity 0–100
A dramatic special effect that transforms a single percussive sound into a spatial wash of ascending and descending pitches. Try this with single drum hits or short sound effect samples. ADJUST controls the rate of the ascent/descent.

0.2 WhiteHole
ADJUST: Big>Small 0–100
A variation of Stargate that transforms a single sonic event into a randomized series of pitched echoes. ADJUST controls the pitch and delay deviation.

0.3 MotherShip
ADJUST: Velocity 0–100
Need some processing for lift-off or acceleration effects? This effect delivers. Drive it with a single impulse or short sound effect to produce a spatial glide that ascends to the limits of audibility. ADJUST controls the rate of ascent.

0.4 XplodeDown
ADJUST: Velocity 0–100
Use this preset to add more drama to special effects (or even single drum hits). This preset transforms the input source into an eerie downward glide with ADJUST controlling the rate of the glide.

0.5 Xplode Up
ADJUST: Velocity 0–100
A variation of XplodeDown with the input source transformed into an upward glide.

0.6 DialogCloner
ADJUST: Tuning 0–100
A special effect for speech, this preset creates the effect of several people speaking at once. Four additional voices are added above and below the pitch of the input source. ADJUST controls the tuning spread of the four clones.

0.7 Toon Voices
ADJUST: Character 0–7
Changes the character of vocals for special effect dialog tracks. ADJUST selects several different pitch shift amounts to create a range of characters from scary monsters, to chipmunks, to talking bees.

0.8 Evil Voice
ADJUST: Pitch 0–100
Downward pitch shift and a touch of reverb are used to turn a normal male speaking voice into something decidedly dark and nasty. ADJUST allows you to dial the appropriate touch of evil.

0.9 Evil Echoes
ADJUST: Pitch 1–100
This special effect has echoes that change pitch as they repeat. ADJUST controls the amount of shift per repeat. 1-49=descending pitch, 50=no pitch change, 51-100=ascending pitch.
PROGRAM BANK 5 (P5) (continued)

PITCH & DELAY

1.0 Pitch Across
ADJUST: Detune 0–100
A single note produces a 4-voice panned delay. ADJUST controls
the amount of pitch shift for the four voices. Small values produce
detuning. The maximum value (100) produces a major arpeggio.
The delay rhythm is tempo-controlled. Press Tap twice to lock in
with the beat.

1.1 PitchEkoRvb
ADJUST: Eko/Rvb 0–100
The dual pitch shifters produce a detune/echo effect with reverb.
ADJUST lets you set the balance of the two effects. 0=detune
echoes only, 50=detune echoes and reverb, 100=reverb only.

1.2 PitchPong
ADJUST: DelayRate 0–100
The inputs are delayed, pitched down a little, then cross fed to the
other side. Slap echoes bounce from left to right and fall slightly in
pitch. The LFO adds chorusing to the pitch change. Stereo
In/Stereo Out.

1.3 AR DlyVerb
ADJUST: Detune 0–100
When the input level drops, delays fade away into reverb. Stereo
In/Stereo Out.

1.4 In The Air
ADJUST: Go 0–1
The inputs are detuned + and - 8 cents. When ADJUST is changed
from 0 to 1, a quarter-note delay recirculates through the detuner.
Stereo In/Stereo Out.

1.5 Thick>Ducked
ADJUST: Detune 0–100
The inputs are detuned. When the input level drops below the
threshold, quarter-note delays with regeneration recirculates into
the detuners. Stereo In/Stereo Out.

1.6 FootPdlEkos
ADJUST: Detune 0–100
Designed to be used with a foot pedal. A detune chorus is routed
through stereo delays and reverb. The pedal controls the input
level to the delays and reverb. Use the pedal to capture specific
phrases in the delays/reverb. Great with guitar and other solo
instruments.

1.7 DualDTuneDly
ADJUST: cents +/- 0–100
This preset combines two detuned voices with delays. ADJUST
controls the amount of detune. Controls for the delays (and reverb
too) are in the Soft row.

1.8 QuaDTuneDly1
ADJUST: TuneKnob 0–100
For thicker detune and delay effects, this preset uses four pitch
shifters for detuning. ADJUST controls the pitch spread of the four
shifters. Delay and reverb controls are in the Soft row.

1.9 QuaDTuneDly2
ADJUST: TuneKnob 0–100
Similar to QuadTuneDly1 with the delays set to rhythmic values
(eighths and triplets). Press Tap to synchronize the rhythms to the
beat.
PITCH SEQUENCES

2.0 Major Across ADJUST: MasterDly 0–100
A major triad is arpeggiated across the stereo field. ADJUST controls the overall timing of the arpeggiation.

2.1 Minor Across ADJUST: MasterDly 0–100
A minor triad is arpeggiated across the stereo field. ADJUST controls the overall timing of the arpeggiation.

2.2 Dim hARP ADJUST: GlissRate 0–100
The inputs rise in a diminished arpeggiated scale. This preset turns one harp note into a glissando, or one quarter note into a harp chord. Individual voices are panned across the stereo field. Stereo In/Stereo Out.

2.3 Dim hARP Vrb ADJUST: GlissRate 0–100
Similar to Dim hARP with an added reverb.

2.4 DimScaleDown ADJUST: ScaleRate 0–100
The inputs descend into a diminished arpeggiated scale. This preset turns one note into a scale or glissando. Individual voices are panned across the stereo spectrum. A little reverb is added.

2.5 GlassCascade ADJUST: MasterDly 0-100
A glassy, chime-like tail makes this preset great for sustained single-note melodies. Spooky and pretty at the same time. Stereo In/Stereo Out.

2.6 Carnival ADJUST: MstrFdbk 0–100
Turns guitar or piano into steel drums, especially if you play diatonic thirds, as steel drummers have been known to do. Stereo In/Stereo Out.

2.7 Sequence 1 ADJUST: MasterFbk 0–100

2.8 Sequence 2 ADJUST: MasterFbk 0–100
Similar to Sequence1 with a very different sound.

2.9 Pentatonics! ADJUST: MasterFbk 0-100
A sequence of notes from the minor pentatonic scale are played for each input note. The input note is treated as the root of the scale. ADJUST controls the amount of feedback.

PADS & DRONES

3.0 JurassicSolo ADJUST: Decay 0–100
A very long plate reverb is pitched down a minor third. Spooky. Good for single-note melody soundtracks. Stereo In/Stereo Out.

3.1 SwrlWhlNt ADJUST: MasterDly 0–100
Swirling Whole Note — An LFO controls FX Width. FX Mix is 100% reverb. Delay time is 0ms. Slightly detuned swirling voices produce a reverb that is especially wonderful on whole notes. Stereo In/Stereo Out.
PROGRAM BANK 5 (PS) (continued)

PADS & DRONES (continued)

3.2 Sweet Chorus \hspace{1cm} \textbf{ADJUST: Spd/Width} 0–100
An LFO sine wave alternates detuning from positive to negative pitch values. The pitch of both outputs is positive, then negative. \textbf{ADJUST} changes both the speed and width of detuning (faster=wider). Stereo In/Stereo Out.

3.3 MirrorChorus \hspace{1cm} \textbf{ADJUST: Speed} 0–100
An LFO square wave alternates detuning from positive to negative pitch values. The pitch shift of the left output is the opposite of the right. Stereo In/Stereo Out.

3.4 LFO Detune \hspace{1cm} \textbf{ADJUST: Detune} 0–100
A slow, chorusy detuner. Stereo In/Stereo Out.

3.5 SpatialDuck \hspace{1cm} \textbf{ADJUST: cents +/–} 0–100
This preset produces a wash of detuned echoes with long reverb decay. The reverb OutWidth is modulated to create spatial movement. The entire effect is ducked by input level. (The reverb and echo decays increase as the level fades.) \textbf{ADJUST} controls the amount of detuning.

3.6 Vibrato BPM \hspace{1cm} \textbf{ADJUST: Depth} 0–100
The vibrato produced by this effect is tempo controlled so it can be synchronized to the beat. \textbf{ADJUST} sets the vibrato depth. Press Tap twice to lock-in the tempo.

3.7 Verbato \hspace{1cm} \textbf{ADJUST: Depth} 0–100
In this preset, a small stereo chamber reverb is routed through the stereo pitch shifter. The pitch shifter is set to create vibrato. A nice way to thicken up a track without messing with the dry sound.

UTILITY PROGRAMS

3.8 Stereo VSO \hspace{1cm} \textbf{ADJUST: Rvb Mix} 0–100
Use this preset for pitch correcting stereo off-speed playback material. Set the Varispeed parameter (in the first position of the Soft row) to match the amount of varispeed used for playback. \textbf{ADJUST} controls the amount of reverb added to the corrected audio.

3.9 Mono VSO \hspace{1cm} \textbf{ADJUST: Rvb Mix} 0–100
Use this preset for pitch correcting mono off-speed playback material. Set the Varispeed parameter (in the first position of the Soft row) to match the amount of varispeed used for playback. \textbf{ADJUST} controls the amount of reverb added to the corrected audio.

PITCH CORRECT

With the exception of Demo Correct (4.9), all of the presets are designed to accept a mono vocal track on either (or both) inputs. Note also that, in each preset, the reverb is turned off and all pitch parameters that are not patched can be found in the Soft Row.
4.0 VoxFix E2>C6
ADJUST: On/Off 0-1
This preset is set up to be used with a MIDI controller with a keyboard, pitch bender and sustain pedal. It provides three different methods to correct pitch problems. You can: use the bender to change the pitch "on the fly," use the sustain pedal to turn correction on and off, or fix a bad note by playing the correct one on the keyboard. Press Edit to see the notes displayed. ADJUST is patched to turn correction on and off. All of the pitch parameters that aren't patched are in the Soft Row. Low Note and High Note are tuned to the full vocal range (E2 through C6).

4.1 VoxFix Bass
ADJUST: On/Off 0-1
The same as VoxFix E2>C6, except that it is tuned to the bass range (E2-A4).

4.2 VoxFix Tenor
ADJUST: On/Off 0-1
The same as VoxFix E2>C6, except that it is tuned to the tenor range (C3-C5).

4.3 VoxFix Alto
ADJUST: On/Off 0-1
The same as VoxFix E2>C6, except that it is tuned to the alto range (F3-F5).

4.4 VoxFix Sprno
ADJUST: On/Off 0-1
The same as VoxFix E2>C6, except that it is tuned to the soprano range (C4-C6).

4.5 KnobCentsUp
ADJUST: Sharp 0–100
For tracks that are consistently flat. Use ADJUST to tune the track up, and a MIDI keyboard to fix bad notes.

4.6 KnobCentsDN
ADJUST: Flat 0-100
For tracks that are consistently sharp. Use ADJUST to tune the track down, and a MIDI keyboard to fix bad notes.

4.7 Double Effect
ADJUST: On/Off 0-1
This preset produces an alternative double track effect. Mix the output of the PCM 81 with the original vocal track. Use ADJUST to randomize the amount of delay and pitch difference between the original and processed tracks.

4.8 Knob Freeze
ADJUST: On/Off 0-1
This one is a special effect. Turn ADJUST from 0 to 1 to freeze the pitch of the vocal track to whatever was being sung when the knob was turned. Turn it back down to 0 to release the pitch. Mixed with the original, this creates drone-like harmonies. By itself, this effect is a new take on “robot” voices.

4.9 Demo Correct
ADJUST: unused
This preset is for demonstration use. The left input is turned off and all the pitch parameters are in the Soft Row.
ALPHABETICAL INDEX OF PRESETS

<table>
<thead>
<tr>
<th>Preset</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 String</td>
<td>P4 3.0</td>
</tr>
<tr>
<td>2WayStreet</td>
<td>P1 4.6</td>
</tr>
<tr>
<td>2WayTunnel</td>
<td>P1 4.8</td>
</tr>
<tr>
<td>4-NoteChords</td>
<td>P4 3.3</td>
</tr>
<tr>
<td>4ths & Dbl</td>
<td>P4 1.6</td>
</tr>
<tr>
<td>6 StrokeRoll</td>
<td>P1 0.9</td>
</tr>
<tr>
<td>6 Vox Chorus</td>
<td>P0 2.3</td>
</tr>
<tr>
<td>6 Vox Flange</td>
<td>P0 2.6</td>
</tr>
<tr>
<td>[n]Ekos/Beat</td>
<td>P1 0.0</td>
</tr>
<tr>
<td>Add Voices</td>
<td>P4 0.9</td>
</tr>
<tr>
<td>ADJToFreeze</td>
<td>P3 4.5</td>
</tr>
<tr>
<td>ADJToFreeze2</td>
<td>P3 4.6</td>
</tr>
<tr>
<td>ADJUpMyEchoes</td>
<td>P0 1.9</td>
</tr>
<tr>
<td>ADTStereoIn</td>
<td>P4 0.5</td>
</tr>
<tr>
<td>Alley Slap</td>
<td>P3 2.6</td>
</tr>
<tr>
<td>AmbientCarBy</td>
<td>P1 4.4</td>
</tr>
<tr>
<td>AR DlyVerb</td>
<td>P5 1.3</td>
</tr>
<tr>
<td>AutoFadeln 1</td>
<td>P2 3.4</td>
</tr>
<tr>
<td>AutoFadeln 2</td>
<td>P2 3.5</td>
</tr>
<tr>
<td>AutoFadeln 3</td>
<td>P2 3.6</td>
</tr>
<tr>
<td>AutoInfinite</td>
<td>P0 4.5</td>
</tr>
<tr>
<td>AutoScratch</td>
<td>P4 4.8</td>
</tr>
<tr>
<td>Backstage</td>
<td>P2 1.7</td>
</tr>
<tr>
<td>BandEko Rvb</td>
<td>P1 2.6</td>
</tr>
<tr>
<td>BandEkoSweep</td>
<td>P1 2.7</td>
</tr>
<tr>
<td>BandReject 4</td>
<td>P2 0.8</td>
</tr>
<tr>
<td>BigBoomRoom</td>
<td>P3 2.9</td>
</tr>
<tr>
<td>BowedChords</td>
<td>P2 3.8</td>
</tr>
<tr>
<td>BowedEchos</td>
<td>P2 3.9</td>
</tr>
<tr>
<td>Brass Plate</td>
<td>P3 1.5</td>
</tr>
<tr>
<td>Brick Kick</td>
<td>P3 0.3</td>
</tr>
<tr>
<td>-C-</td>
<td></td>
</tr>
<tr>
<td>Carnival</td>
<td>P5 2.6</td>
</tr>
<tr>
<td>ChaosImpuls</td>
<td>P0 3.9</td>
</tr>
<tr>
<td>ChaseEcho</td>
<td>P1 2.9</td>
</tr>
<tr>
<td>CheapTV Room</td>
<td>P1 3.8</td>
</tr>
<tr>
<td>Chord Walk</td>
<td>P2 4.2</td>
</tr>
<tr>
<td>ChordSwell</td>
<td>P2 3.7</td>
</tr>
<tr>
<td>Chorus Plate</td>
<td>P0 0.5</td>
</tr>
<tr>
<td>Chorus Room</td>
<td>P0 0.6</td>
</tr>
<tr>
<td>Chorus&Amb</td>
<td>P0 2.2</td>
</tr>
<tr>
<td>Chorus&Pan</td>
<td>P0 2.1</td>
</tr>
<tr>
<td>ChorusToRvb</td>
<td>P0 0.7</td>
</tr>
<tr>
<td>ChromaticDn</td>
<td>P4 3.7</td>
</tr>
<tr>
<td>Chromatic Up</td>
<td>P4 3.6</td>
</tr>
<tr>
<td>CircularPan</td>
<td>P2 1.4</td>
</tr>
<tr>
<td>Cocomo</td>
<td>P4 0.3</td>
</tr>
<tr>
<td>Comb Room</td>
<td>P1 4.1</td>
</tr>
<tr>
<td>Concert Hall</td>
<td>P3 1.9</td>
</tr>
<tr>
<td>Concert Wave</td>
<td>P3 1.8</td>
</tr>
<tr>
<td>ConcertHall2</td>
<td>P3 2.0</td>
</tr>
<tr>
<td>-D-</td>
<td></td>
</tr>
<tr>
<td>Deep Space</td>
<td>P3 2.4</td>
</tr>
<tr>
<td>Demo Correct</td>
<td>P5 4.9</td>
</tr>
<tr>
<td>DemonDescent</td>
<td>P0 4.0</td>
</tr>
<tr>
<td>Detune&DbI</td>
<td>P0 1.0</td>
</tr>
<tr>
<td>Detune&Room</td>
<td>P0 0.9</td>
</tr>
<tr>
<td>Detuned Ekos</td>
<td>P0 1.7</td>
</tr>
<tr>
<td>Dial a Delay</td>
<td>P1 3.5</td>
</tr>
<tr>
<td>DialogCloner</td>
<td>P5 0.6</td>
</tr>
<tr>
<td>Dim hARP</td>
<td>P5 2.2</td>
</tr>
<tr>
<td>Dim hARP Vrb</td>
<td>P5 2.3</td>
</tr>
<tr>
<td>DimScaleDown</td>
<td>P5 2.4</td>
</tr>
<tr>
<td>Dly>EQ>Pans</td>
<td>P1 3.2</td>
</tr>
<tr>
<td>Dotted 8ths</td>
<td>P1 0.4</td>
</tr>
<tr>
<td>DoubleEffect</td>
<td>P5 4.7</td>
</tr>
<tr>
<td>Drum Gate</td>
<td>P3 2.7</td>
</tr>
<tr>
<td>Drum Plate</td>
<td>P3 1.6</td>
</tr>
<tr>
<td>DualDetune</td>
<td>P4 2.1</td>
</tr>
<tr>
<td>DualDTuneDly</td>
<td>P5 1.7</td>
</tr>
<tr>
<td>Dyna Vibrato</td>
<td>P3 3.6</td>
</tr>
<tr>
<td>Dyna-Hall</td>
<td>P2 2.0</td>
</tr>
<tr>
<td>-E-</td>
<td></td>
</tr>
<tr>
<td>EGtrPitchRm</td>
<td>P4 2.3</td>
</tr>
<tr>
<td>EkoChorus.</td>
<td>P0 0.1</td>
</tr>
<tr>
<td>Ekoz 4 Drums</td>
<td>P1 3.3</td>
</tr>
<tr>
<td>Empty Stage</td>
<td>P1 3.9</td>
</tr>
<tr>
<td>Env Notches</td>
<td>P2 0.7</td>
</tr>
<tr>
<td>Env:PanKorus</td>
<td>P0 2.5</td>
</tr>
<tr>
<td>EnvChamber</td>
<td>P3 3.2</td>
</tr>
<tr>
<td>EnveloVerb</td>
<td>P3 3.9</td>
</tr>
<tr>
<td>Ev Echoes</td>
<td>P0 2.9</td>
</tr>
<tr>
<td>Evil Voice</td>
<td>P5 0.8</td>
</tr>
<tr>
<td>-F-</td>
<td></td>
</tr>
<tr>
<td>FinishLine</td>
<td>P1 4.9</td>
</tr>
<tr>
<td>FixVerVox</td>
<td>P4 0.0</td>
</tr>
<tr>
<td>FixVerVoxChm</td>
<td>P4 0.1</td>
</tr>
<tr>
<td>Flange+Rvb</td>
<td>P0 1.3</td>
</tr>
<tr>
<td>Flange-Rvb</td>
<td>P0 1.2</td>
</tr>
<tr>
<td>FootPd1 Oct</td>
<td>P4 3.8</td>
</tr>
<tr>
<td>FootPd1Chord</td>
<td>P4 3.9</td>
</tr>
<tr>
<td>FootPd1Ekos</td>
<td>P5 1.6</td>
</tr>
<tr>
<td>Freeze 2 of 8</td>
<td>P3 4.2</td>
</tr>
<tr>
<td>Freeze 20r3</td>
<td>P3 4.3</td>
</tr>
<tr>
<td>Freeze&Speed</td>
<td>P3 4.4</td>
</tr>
<tr>
<td>Large Room</td>
<td>P3 0.4</td>
</tr>
<tr>
<td>LatchedEkos</td>
<td>P1 1.6</td>
</tr>
<tr>
<td>LeviStutter</td>
<td>P3 4.1</td>
</tr>
<tr>
<td>LFO Detune</td>
<td>P5 3.4</td>
</tr>
<tr>
<td>LFO EQ Echo</td>
<td>P1 2.8</td>
</tr>
<tr>
<td>Living Room</td>
<td>P3 0.2</td>
</tr>
<tr>
<td>Locker Room</td>
<td>P3 0.9</td>
</tr>
<tr>
<td>[n]Ekos/Beat</td>
<td>P1 0.0</td>
</tr>
<tr>
<td>-M-</td>
<td></td>
</tr>
<tr>
<td>Major & Dbls</td>
<td>P4 1.4</td>
</tr>
<tr>
<td>Ghost</td>
<td>P3 1.1</td>
</tr>
<tr>
<td>Ghost Across</td>
<td>P5 2.0</td>
</tr>
<tr>
<td>Ghost Flange</td>
<td>P2 3.1</td>
</tr>
<tr>
<td>Ghost Flange</td>
<td>P2 3.2</td>
</tr>
<tr>
<td>Ghost Flange</td>
<td>P2 3.1</td>
</tr>
<tr>
<td>GlassCascade</td>
<td>P5 2.5</td>
</tr>
<tr>
<td>Glide > Verb</td>
<td>P0 1.5</td>
</tr>
<tr>
<td>Glide X-Ekos</td>
<td>P0 1.6</td>
</tr>
<tr>
<td>Go Away</td>
<td>P2 1.3</td>
</tr>
<tr>
<td>Good olPlate</td>
<td>P3 1.3</td>
</tr>
<tr>
<td>MIDI Chord</td>
<td>P4 1.9</td>
</tr>
<tr>
<td>MIDI Harmony</td>
<td>P4 1.8</td>
</tr>
<tr>
<td>MIDI Pitch</td>
<td>P4 1.7</td>
</tr>
<tr>
<td>MIDI Rotate</td>
<td>P0 3.2</td>
</tr>
<tr>
<td>MIDIChords</td>
<td>P2 4.6</td>
</tr>
<tr>
<td>MIDI sustain</td>
<td>P2 4.9</td>
</tr>
<tr>
<td>Minor & Dbls</td>
<td>P4 1.5</td>
</tr>
<tr>
<td>Minor Across</td>
<td>P5 2.1</td>
</tr>
<tr>
<td>Minor Chords</td>
<td>P4 1.1</td>
</tr>
<tr>
<td>Minor Triads</td>
<td>P4 1.3</td>
</tr>
<tr>
<td>MinorTriads</td>
<td>P4 1.3</td>
</tr>
<tr>
<td>JurassicSolo</td>
<td>P5 3.0</td>
</tr>
<tr>
<td>MirrorChorus</td>
<td>P3 3.3</td>
</tr>
<tr>
<td>Knob CentsOn</td>
<td>P5 4.6</td>
</tr>
<tr>
<td>Knob CentsUp</td>
<td>P5 4.5</td>
</tr>
<tr>
<td>Knob Freeze</td>
<td>P5 4.8</td>
</tr>
<tr>
<td>Mod Chords1</td>
<td>P4 3.4</td>
</tr>
<tr>
<td>ModChords2</td>
<td>P4 3.5</td>
</tr>
<tr>
<td>ModImpulse</td>
<td>P2 4.4</td>
</tr>
<tr>
<td>Mono VSO</td>
<td>P5 3.9</td>
</tr>
<tr>
<td>-L-</td>
<td></td>
</tr>
<tr>
<td>MotherShip</td>
<td>P5 0.3</td>
</tr>
<tr>
<td>Movable Echo</td>
<td>P2 1.1</td>
</tr>
<tr>
<td>Movable Hall</td>
<td>P2 1.2</td>
</tr>
<tr>
<td>MultiFx Fade</td>
<td>P2 3.0</td>
</tr>
<tr>
<td>-N-</td>
<td></td>
</tr>
<tr>
<td>[n]Ekos/Beat</td>
<td>P1 0.0</td>
</tr>
<tr>
<td>4-34</td>
<td></td>
</tr>
</tbody>
</table>
Presets

<table>
<thead>
<tr>
<th>Preset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O-</td>
<td></td>
</tr>
<tr>
<td>OctDown Verb</td>
<td>P4 2.8</td>
</tr>
<tr>
<td>OffBeat Eko</td>
<td>P1 0.2</td>
</tr>
<tr>
<td>OffBeatEko2</td>
<td>P1 0.3</td>
</tr>
<tr>
<td>OneShotCarBy</td>
<td>P4 3.3</td>
</tr>
<tr>
<td>-P-</td>
<td></td>
</tr>
<tr>
<td>Pan>Eko BPM</td>
<td>P1 1.8</td>
</tr>
<tr>
<td>Panned Dlys</td>
<td>P3 0.3</td>
</tr>
<tr>
<td>Panner BPM</td>
<td>P2 2.7</td>
</tr>
<tr>
<td>Pedal Swell</td>
<td>P2 4.0</td>
</tr>
<tr>
<td>Pentatonics!</td>
<td>P5 2.9</td>
</tr>
<tr>
<td>Phat Detune</td>
<td>P4 2.2</td>
</tr>
<tr>
<td>PhoneOrRoom?</td>
<td>P1 3.7</td>
</tr>
<tr>
<td>Piano Hall</td>
<td>P3 2.1</td>
</tr>
<tr>
<td>Pitch Across</td>
<td>P5 1.0</td>
</tr>
<tr>
<td>PitchEkoRvb</td>
<td>P5 1.1</td>
</tr>
<tr>
<td>PitchPong</td>
<td>P5 1.2</td>
</tr>
<tr>
<td>PitchSlapRvb</td>
<td>P4 2.9</td>
</tr>
<tr>
<td>Plate4 Horns</td>
<td>P3 2.5</td>
</tr>
<tr>
<td>PowerNotes</td>
<td>P4 3.2</td>
</tr>
<tr>
<td>PreciseGlide</td>
<td>P0 2.8</td>
</tr>
<tr>
<td>PrecisionDly</td>
<td>P1 3.6</td>
</tr>
<tr>
<td>Prime Blue</td>
<td>P0 0.0</td>
</tr>
<tr>
<td>PullThePlug!</td>
<td>P5 0.0</td>
</tr>
<tr>
<td>-Q-</td>
<td></td>
</tr>
<tr>
<td>Quad Track</td>
<td>P4 0.7</td>
</tr>
<tr>
<td>QuadDTune</td>
<td>P4 0.4</td>
</tr>
<tr>
<td>QuadDTuneDly1</td>
<td>P5 1.8</td>
</tr>
<tr>
<td>QuadDTuneDly2</td>
<td>P5 1.9</td>
</tr>
<tr>
<td>Quint Track</td>
<td>P4 0.8</td>
</tr>
<tr>
<td>-S-</td>
<td></td>
</tr>
<tr>
<td>Sci Fi</td>
<td>P3 3.4</td>
</tr>
<tr>
<td>Sequence 1</td>
<td>P5 2.7</td>
</tr>
<tr>
<td>Sequence 2</td>
<td>P5 2.8</td>
</tr>
<tr>
<td>Shuffle Ekos</td>
<td>P1 0.5</td>
</tr>
<tr>
<td>Shuffles</td>
<td>P1 0.6</td>
</tr>
<tr>
<td>SingleDetune</td>
<td>P4 2.0</td>
</tr>
<tr>
<td>Six Across</td>
<td>P1 2.5</td>
</tr>
<tr>
<td>Six Trips</td>
<td>P1 0.8</td>
</tr>
<tr>
<td>Slap Dn BPM</td>
<td>P4 4.5</td>
</tr>
<tr>
<td>Slap Plate</td>
<td>P1 3.1</td>
</tr>
<tr>
<td>Slap Up BPM</td>
<td>P4 4.4</td>
</tr>
<tr>
<td>Sliding Eko</td>
<td>P1 0.7</td>
</tr>
<tr>
<td>Slope Down</td>
<td>P3 2.8</td>
</tr>
<tr>
<td>Small Room</td>
<td>P3 0.1</td>
</tr>
<tr>
<td>Small+Stage</td>
<td>P3 0.0</td>
</tr>
<tr>
<td>SnareChamber</td>
<td>P3 0.5</td>
</tr>
<tr>
<td>SnareTools 1</td>
<td>P4 4.0</td>
</tr>
<tr>
<td>SnareTools 2</td>
<td>P4 4.1</td>
</tr>
<tr>
<td>SnareTools 3</td>
<td>P4 4.2</td>
</tr>
<tr>
<td>Spatial Hall</td>
<td>P2 1.5</td>
</tr>
<tr>
<td>SpatialDuck</td>
<td>P5 3.5</td>
</tr>
<tr>
<td>Spin & Duck</td>
<td>P2 2.9</td>
</tr>
<tr>
<td>Split C&E</td>
<td>P2 1.9</td>
</tr>
<tr>
<td>Split Pitch?</td>
<td>P5 4.3</td>
</tr>
<tr>
<td>Stargate</td>
<td>P5 0.1</td>
</tr>
<tr>
<td>Steered Rear</td>
<td>P2 1.8</td>
</tr>
<tr>
<td>Stereo Notch</td>
<td>P3 0.5</td>
</tr>
<tr>
<td>Stereo VSO</td>
<td>P3 3.8</td>
</tr>
<tr>
<td>StereoB-Pass</td>
<td>P0 2.4</td>
</tr>
<tr>
<td>StereoEko</td>
<td>P0 1.8</td>
</tr>
<tr>
<td>StereoHiPass</td>
<td>P2 0.3</td>
</tr>
<tr>
<td>StereoLoPass</td>
<td>P0 2.0</td>
</tr>
<tr>
<td>StereoTapDly</td>
<td>P1 0.1</td>
</tr>
<tr>
<td>Stop n Go</td>
<td>P4 4.9</td>
</tr>
<tr>
<td>Super Ball</td>
<td>P3 4.0</td>
</tr>
<tr>
<td>Sweeper</td>
<td>P2 4.8</td>
</tr>
<tr>
<td>SweepVerb</td>
<td>P3 3.8</td>
</tr>
<tr>
<td>Sweet Chorus</td>
<td>P3 3.2</td>
</tr>
<tr>
<td>SweptNotches</td>
<td>P2 0.6</td>
</tr>
<tr>
<td>SwirlWholNt</td>
<td>P5 3.1</td>
</tr>
<tr>
<td>Tap Chamber1</td>
<td>P1 1.4</td>
</tr>
<tr>
<td>Tap Chamber2</td>
<td>P1 1.5</td>
</tr>
<tr>
<td>Tape Echo</td>
<td>P1 2.1</td>
</tr>
<tr>
<td>TapeEchoClear</td>
<td>P1 1.3</td>
</tr>
<tr>
<td>TapeEchoGate</td>
<td>P1 1.1</td>
</tr>
<tr>
<td>TapeEchoGate2</td>
<td>P1 1.2</td>
</tr>
<tr>
<td>TapCated Rvb</td>
<td>P1 1.0</td>
</tr>
<tr>
<td>Tempo Gate</td>
<td>P1 2.0</td>
</tr>
<tr>
<td>Tempo Verb</td>
<td>P1 1.9</td>
</tr>
<tr>
<td>Thick FixVox</td>
<td>P4 0.2</td>
</tr>
<tr>
<td>Thick Slap</td>
<td>P4 4.8</td>
</tr>
<tr>
<td>ThickDucked</td>
<td>P5 1.5</td>
</tr>
<tr>
<td>Thunder FX</td>
<td>P0 3.7</td>
</tr>
<tr>
<td>Thunder FX 2</td>
<td>P3 3.8</td>
</tr>
<tr>
<td>Tight Space</td>
<td>P0 1.1</td>
</tr>
<tr>
<td>-U, V-</td>
<td></td>
</tr>
<tr>
<td>Under Water</td>
<td>P0 3.6</td>
</tr>
<tr>
<td>V-Eliminate</td>
<td>P0 4.7</td>
</tr>
<tr>
<td>Verbato</td>
<td>P5 4.7</td>
</tr>
<tr>
<td>Vibrato BPM</td>
<td>P5 3.7</td>
</tr>
<tr>
<td>VibroShift1</td>
<td>P4 2.4</td>
</tr>
<tr>
<td>VibroShift2</td>
<td>P4 2.5</td>
</tr>
<tr>
<td>VibroTrem</td>
<td>P4 2.6</td>
</tr>
<tr>
<td>VibroTremRvb</td>
<td>P4 2.7</td>
</tr>
<tr>
<td>VibroVerb</td>
<td>P3 3.7</td>
</tr>
<tr>
<td>Vocal Hall</td>
<td>P3 2.3</td>
</tr>
<tr>
<td>Vox Chamber</td>
<td>P3 0.8</td>
</tr>
<tr>
<td>Vox Plate</td>
<td>P3 1.2</td>
</tr>
<tr>
<td>VoxFix Alto</td>
<td>P3 4.3</td>
</tr>
<tr>
<td>VoxFix Bass</td>
<td>P5 4.1</td>
</tr>
<tr>
<td>VoxFix E2>C6</td>
<td>P5 4.0</td>
</tr>
<tr>
<td>VoxFix Sprno</td>
<td>P5 4.4</td>
</tr>
<tr>
<td>VoxFix Tenor</td>
<td>P4 4.2</td>
</tr>
<tr>
<td>-W-</td>
<td></td>
</tr>
<tr>
<td>WaaPedalEko</td>
<td>P2 0.9</td>
</tr>
<tr>
<td>Wet Chorus</td>
<td>P0 0.2</td>
</tr>
<tr>
<td>Wet Chorus 2</td>
<td>P0 0.3</td>
</tr>
<tr>
<td>Wet Chorus 3</td>
<td>P3 0.4</td>
</tr>
<tr>
<td>Whammy Hall</td>
<td>P3 3.0</td>
</tr>
<tr>
<td>WhiteHole</td>
<td>P5 0.2</td>
</tr>
<tr>
<td>Wide Chamber</td>
<td>P3 1.0</td>
</tr>
<tr>
<td>Wizz & Wazz</td>
<td>P3 3.3</td>
</tr>
<tr>
<td>Wobble Plate</td>
<td>P3 3.5</td>
</tr>
</tbody>
</table>
MIDI Operation

Selecting a MIDI Channel..5-2
Accessing Programs and Registers...5-2
Controlling Tempo Rate with MIDI Clock......................................5-3
 MIDI Tempo Control • Using the PCM 81 as a MIDI Clock Source • Slaving Two
 or More PCM 81s
Controller Quirks...5-4
The ADJUST Knob, Foot Pedal, Foot Sw 1, and
Foot Sw 2 as MIDI Controllers...5-4
 Controlling the Soft Knob with MIDI • Controlling the Soft Knob with a Foot
 Pedal
Program Change Messages...5-5
Automation...5-6
 SysEx Automation • Controller Automation • Reset All Controllers • MIDI Clock
 and Clock Commands • PCM 90 Compatibility • Dynamic MIDI
Bulk Data Dumps...5-8
MIDI Implementation Chart..5-8
SELECTING A MIDI CHANNEL

All PCM 81 parameters, programs and registers can be accessed by MIDI. All MIDI applications require the PCM 81 to be connected with one or more MIDI devices with standard MIDI cables via the rear panel MIDI jacks.

MIDI controls, such as Transmit and Receive Channel selection are available in Control mode Row 3 MIDI. All of these controls are described in Chapter 2. Several are repeated here for your convenience.

Before using the PCM 81 with other MIDI devices, all devices must be set to the same MIDI channel. To set the PCM 81 to receive MIDI:

1. Set the controller you will be using (keyboard, sequencer, other PCM 81, etc.) to transmit on any MIDI channel (1-16).
2. On the PCM 81, press Control. Use Select and Up and Down to locate matrix position 3.1 Receive.
3. Turn ADJUST to select OFF, 1-16, or OMNI for receipt of MIDI messages.

ACCESSING PROGRAMS AND REGISTERS

Some extremely useful effects can be created by controlling PCM 81 parameters remotely in real time. Almost all of the controllers found on a MIDI keyboard or MIDI foot controller (pitch benders, mod wheels, sliders, switches, breath controllers, foot pedals and footswitches) can be used to adjust PCM 81 parameters. We refer to this real time remote control capability as Dynamic MIDI®.

Sending a MIDI Program Change message (0-49) from the controller will load the corresponding PCM 81 register. If any MIDI sources are active as global or general purpose patches, moving the appropriate control on the controller will cause the patched destination parameter to change. (See Patching.) If you want to use Dynamic MIDI, but don’t want the PCM 81 to load new registers when you change programs on your controller, set your controller so that it doesn’t transmit Program Change messages, or set PCM 81 MIDI Program Change to Off at Control mode matrix location 3.3.
CONTROLLING TEMPO RATE WITH MIDI CLOCK

MIDI TEMPO CONTROL

This configuration shows the MIDI connections for controlling the PCM 81 simultaneously with MIDI Clocks from a sequencer, and messages from another MIDI controller. Note that the controller is set to "local control off" and the sequencer is set to "echo input".

PCM 81 Tempo 0.2 Source set to MIDI

USING THE PCM 81 AS A MIDI CLOCK SOURCE

PCM 81 Control 3.6 Int Clock set to Transmit On
Tempo 0.2 Source set to Internal
Tempo 0.0 Rate set with ADJUST or Tap
SLAVING TWO OR MORE PCM 81s

Two PCM 81s can be slaved together by connecting a cable from the MIDI OUT jack of the master to the MIDI IN jack of the slave. Additional PCM 81s can be slaved to the master by connecting a cable from the MIDI THRU port of one slave unit to the MIDI IN port of the next unit. All of the PCM 81s must be set to the same MIDI channel.

CONTROLLER QUIRKS

Some synthesizers and controllers cannot send the full range of MIDI program change messages (1-128). Others may appear to be able to send only 32, but actually have a bank mode that does let you send all 128 program change messages. Also, be aware that some MIDI devices use a program numbering system that uses 0-127 instead of 1-128. If in doubt, see the manual for your controller.

THE ADJUST KNOB, FOOT PEDAL, FOOT SW 1, AND FOOT SW 2 AS MIDI CONTROLLERS

You can choose to have the PCM 81 send MIDI Controller messages whenever you turn ADJUST (the soft knob in Program Banks or Register Banks modes), or to activate analog controllers connected to the rear panel Footswitch or Foot Controller jacks. This makes it possible to record real-time control of PCM 81 effects with a MIDI sequencer — A simple but quite powerful way to automate effects.

To send MIDI data from these controllers, first set Control mode 3.2 (Transmit) to the desired MIDI Channel. (The default is Channel 1.)

Once a transmit channel has been set, go to Control mode 3.5 to assign MIDI Controllers. Press Load/✱ to display the available controllers: Foot Pedal, Foot Sw1, Foot Sw2 or ADJUST. Turn ADJUST to assign the MIDI Controller data to be sent when the displayed controller is activated. (The default assignment is None.).

When a PCM 81 controller is assigned to a MIDI Controller, the PCM 81 will respond to incoming controller messages as though its own controller were moved. In other words, if FootSw1 is assigned to Sustain, the PCM 81 will respond to incoming Sustain messages as though FootSw1 had been activated.
CONTROLLING THE SOFT KNOB WITH MIDI

Each PCM 81 preset has a unique soft knob patch that allows you to control the effect directly from Program or Register Banks mode with the ADJUST knob. You can also control the soft knob patch remotely from MIDI, or from the Foot Pedal.

To control the soft knob with MIDI, set Control mode 3.1 (Receive) to the desired MIDI Channel. Set Control mode 3.5 (ADJUST) to the desired MIDI Controller such as Mod Wheel.

Now, the Mod Wheel on the MIDI instrument will control the soft knob patch of the running effect.

CONTROLLING THE SOFT KNOB WITH A FOOT PEDAL

If you have a foot pedal connected to the PCM rear panel Foot Controller jack, you can use it to control the soft knob patch. (Note that no MIDI connections are required to do this.)

Set both Control mode 3.5 ADJUST and Control mode 3.5 Foot Pedal to the same MIDI Controller.

Now, the foot pedal will control the soft knob patch of the running effect.

PROGRAM CHANGE MESSAGES

Reception of MIDI Program Change and Bank Select messages can be selectively enabled/disabled from Control Mode parameter 3.0, MIDI Pgm Change. The manner in which the PCM 81 interprets these messages is determined by the value of this parameter as follows:

Pgm Change: Off

All Program Change and Bank select messages are ignored. Pgm+ and Pgm− will load the next higher or lower program in the current bank.

Pgm Change: On

Program Change messages 0-49 correspond to PCM 81 Effects 0.0 -4.9 in the current bank. Program Change messages 50—127 are ignored. Pgm+ and Pgm− will load the next higher or lower program in the current bank.

The current bank can be changed with MIDI Bank Select Messages as follows:

<table>
<thead>
<tr>
<th>Bank</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>Program Banks 0-5</td>
</tr>
<tr>
<td>6</td>
<td>Internal Register Bank</td>
</tr>
<tr>
<td>7-11</td>
<td>reserved</td>
</tr>
<tr>
<td>12-58</td>
<td>Memory Card Banks</td>
</tr>
</tbody>
</table>

... continued on page 5-6
The number of banks available on a given card will vary with card size as follows:

<table>
<thead>
<tr>
<th>Card Size</th>
<th>Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>256</td>
<td>11</td>
</tr>
<tr>
<td>512</td>
<td>23</td>
</tr>
<tr>
<td>1 Meg</td>
<td>47</td>
</tr>
</tbody>
</table>

Pgm Change: Map
Program Change 0-127 can be mapped to any PCM 81 Effect in any internal or card bank. Two 128 element maps are stored internally, additional maps may be stored on RAM cards.

<table>
<thead>
<tr>
<th>Map 0</th>
<th>Map 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIDI 0 = P0 0.0</td>
<td>MIDI 0 = P2 2.8</td>
</tr>
<tr>
<td>MIDI 127 = P2 2.7</td>
<td>MIDI 127 = R 4.9</td>
</tr>
</tbody>
</table>

Pgm+ and Pgm– will load the next higher or lower program in the map.

Pgm Change: Chain
Any Program Change number can be selected to load any one of ten customized effect “chains.” Once a chain is loaded, effects in the chain are accessed by the controller patched to Pgm + and Pgm – (program increment and program decrement).

AUTOMATION

SYSEX AUTOMATION
The PCM 81 will transmit SysEx automation messages when Control Mode parameter 3.4, MIDI Automation is set to On. All changes made by front panel operations are transmitted as PCM 80 SysEx messages. This is intended primarily for use by editor programs and in configurations where it is desirable for one or more PCM 81s to be slaved to a single PCM 81 acting as a master. The current mode (Program Banks, Register Banks, Edit, Control or Tempo) of the slave does not follow the master, but the actual parameter values do. (SysEx automation can also be stored on a sequencer and replayed in real-time. As a general rule, automating more than two or three SysEx program changes at once is not recommended.) Because messages are transmitted as PCM 80 messages, either PCM 80s or PCM 81s can be slaved to the master.

The PCM 81 can receive SysEx messages when Control mode 3.7 MIDI SysEx is set to Receive On. Note that when using SysEx automation, the device of the receiving PCM 81 must match the Target ID of the transmitting PCM 81.

The Target ID setting can be adjusted from Control 3.4 MIDI Automation. It is selected by pressing Load/* after setting Automation to On. The default setting for the Target ID is All.

The Device ID setting can be adjusted from Control mode 3.7 MIDI SysEx. It is selected by pressing Load/* after setting SysEx to Receive On. The default setting for the Device ID is 0.
CONTROLLER AUTOMATION
For applications where it is desirable to "automate" changes made to PCM 81 effects with its own controls (ADJUST knob, Foot Pedal, Footswitch 1 or Footswitch 2), we recommend assigning the controllers to MIDI destinations and recording the changes with a MIDI sequencer (see Control Mode parameter 3.5, MIDI Destinations).

RESET ALL CONTROLLERS
The PCM 81 recognizes the “Reset All Controllers” message. When received, all patched parameters are reset to their stored values. Patched parameters may also be reset from the PCM 81 front panel — Control Mode parameter 3.0 (the message will be transmitted from the PCM 81 as well).

MIDI CLOCK AND CLOCK COMMANDS
The PCM 81 recognizes MIDI clock messages when Tempo Mode parameter 0.2, Tempo Source is set to MIDI. Any Delay or LFO parameter set to display tempo values will be synchronized to the tempo of the incoming MIDI clock.

MIDI Clock and Clock Commands are also available as Dynamic MIDI patch sources. The value of MIDI Clock when used as a patch source is a linear scaling of 0 to 127 (0 = 40 BPM and 127 = 400 BPM). The value of Clock Commands when used as a Dynamic MIDI patch source is 1 for START and CONTINUE and 0 for STOP.

PCM 90 COMPATIBILITY
The PCM 81 can receive MIDI data from either the PCM 80 or another PCM 81. It can also transmit certain messages in PCM 80 format. (See Bulk Data Dumps and SysEx Automation.) This allows most data to be exchanged between the two products, with any format translations handled automatically by the PCM 81.

DYNAMIC MIDI
The following MIDI messages are available as Dynamic MIDI patch sources:
- MIDI Controllers 1-119
- Pitch Bend
- After Touch (Polyphonic and Channel combined)
- Velocity (Note On)
- Last Note
- Low Note
- High Note
- Tempo (40–400BPM is converted to controller range 0-127)
- Clock Commands

These MIDI messages are also available as threshold sources for several Modulation parameters: AR Env, Latch, Sw 1 and Sw 2. They may also be used as a tap source for controlling Tempo.

Note:
MIDI Implementation Details, including System Exclusive documentation, are available to assist experienced programmers in developing software for use with the PCM 81. These can be obtained directly from Lexicon.
Request: PCM 81 MIDI Implementation Details.
BULK DATA DUMPS

Control mode 3.8 (MIDI Dump) allows selection of the following types of bulk data to be dumped directly from the PCM 81 to another PCM 81, or to editor/librarian software.

Use ADJUST to select the bulk data type. Press Store to transmit the data.

<table>
<thead>
<tr>
<th>Displayed Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Pgm*</td>
<td>Currently running effect</td>
</tr>
<tr>
<td>Bank R*</td>
<td>Internal Register Bank</td>
</tr>
<tr>
<td>Bank C0-CK*</td>
<td>Card Banks (card must be inserted)</td>
</tr>
<tr>
<td>Map 0, 1*</td>
<td>Internal Program Change Maps</td>
</tr>
<tr>
<td>Map 2-33*</td>
<td>Card Program Change Maps (card must be inserted)</td>
</tr>
<tr>
<td>Chain 0-9*</td>
<td>Internal Program Chains</td>
</tr>
<tr>
<td>Chain 10-19*</td>
<td>Card Program Chains (card must be inserted)</td>
</tr>
<tr>
<td>Int Chains*</td>
<td>All Internal Program Chains</td>
</tr>
<tr>
<td>Ext Chains*</td>
<td>All Card Program Chains (card must be inserted)</td>
</tr>
<tr>
<td>Setup C</td>
<td>Current Setup</td>
</tr>
<tr>
<td>Setup 0-4</td>
<td>Internal Setups</td>
</tr>
<tr>
<td>Setup 5-9</td>
<td>Card Setups</td>
</tr>
</tbody>
</table>

Transmitted in PCM 80 format.

MIDI IMPLEMENTATION CHART

Lexicon PCM 81, Digital Effects System,

<table>
<thead>
<tr>
<th>Function</th>
<th>Transmitted</th>
<th>Recognized</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Default</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Channel</td>
<td>Changed</td>
<td>1-16</td>
<td>1-16</td>
</tr>
<tr>
<td>Mode</td>
<td>Default</td>
<td>X</td>
<td>Mode 1, 3</td>
</tr>
<tr>
<td></td>
<td>Messages</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Altered</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
MIDI Operation

<table>
<thead>
<tr>
<th>Function</th>
<th>Transmitted</th>
<th>Recognized</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note Number</td>
<td>X</td>
<td>0-127</td>
<td>Last Note, Low Note, High Note used as controllers.</td>
</tr>
<tr>
<td>Velocity</td>
<td>X</td>
<td>O 9n v = 1-127</td>
<td>Used as controller.</td>
</tr>
<tr>
<td>After Touch</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pitch Bend</td>
<td>X</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Control Change</td>
<td>OX</td>
<td>OX</td>
<td>ADJUST, FootPedal, Footswitch 1, and Footswitch 2, can be assigned controllers 1-119 for MIDI transmit.</td>
</tr>
<tr>
<td>Program Change</td>
<td>X</td>
<td>0-127</td>
<td>See implementation details.</td>
</tr>
<tr>
<td>System Exclusive</td>
<td>OX</td>
<td>OX</td>
<td>Mfgr ID=6; Product ID=7</td>
</tr>
<tr>
<td>System Common</td>
<td>X</td>
<td>X</td>
<td>Device ID</td>
</tr>
<tr>
<td>System Real Time</td>
<td>OX</td>
<td>OX</td>
<td>START, STOP and CONTINUE are patchable as a switch: START/CONTINUE=127; STOP=0</td>
</tr>
<tr>
<td>Aux Messages</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>:Local ON/OFF</td>
<td>X</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>:All Notes OFF</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>:Active Sense</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>:Reset All Controllers</td>
<td>OX</td>
<td>OX</td>
<td></td>
</tr>
</tbody>
</table>

Note: The PCM 81 transmits and receives in both PCM 80 (product ID 0x07) and PCM 81 (product ID 0x10) formats.

Mode 1: OMNI ON, POLY Mode 2: OMNI ON, MONO O: Yes X: No OX: Selectable
Mode 3: OMNI OFF, POLY Mode 4: OMNI OFF, MONO
Troubleshooting

Low Voltage .. 6-2
Overheating .. 6-2
Common MIDI Problems .. 6-2
Operational Problems .. 6-3
 No Input • No Digital Audio Output • No Effects Output
Power On Behavior .. 6-3
Restoring Factory Default Settings ... 6-3
Reinitialization .. 6-4
This chapter is intended primarily to help you recognize some common error states which can be corrected from the PCM 81 front panel, or by simple means such as cable replacement. Any error states which are not covered here should be referred to your local dealer for service by a qualified technician.

LOW VOLTAGE

In a low-voltage, or “brown-out” condition, the PCM 81 will freeze in its current state. None of the controls will have any effect. When power returns to a normal level, the unit will reset itself as though it had just been powered on. If the unit does not reset itself, turn the power OFF, then ON to resume normal operation.

OVERHEATING

Temperature extremes may cause the PCM 81 to exhibit unpredictable behavior. If the unit has been subjected to temperatures below 32°F (0°C) or above 95°F (35°C), it should be turned off and allowed to return to normal temperature before use. The unit may be damaged by exposure to temperatures below -22°F (-30°C) or above 167°F (75°C), or by exposure to humidity in excess of 95%. If a unit exposed to such conditions fails to operate after it returns to a normal operating temperature, contact your local service representative.

COMMON MIDI PROBLEMS

The PCM 81 doesn’t respond to MIDI Program Changes.

Check Receive control at Control mode 3.1 and make sure it is set to On. Check the MIDI Channel selected as well as the MIDI Channel of the transmitting device. Make sure that Pgm Change at Control mode 3.3 is set to On. Also check MIDI In/Out connections between the units.

MIDI Program Change numbers are off by 1.

The PCM 81 transmits and recognizes Program Change messages 0-127. MIDI devices which transmit 1-128 rather than 0-127, will be off by 1. Simply adjust by 1 when working with such devices.

The PCM 81 doesn’t respond to SysEx commands.

Check the SysEx setting (and the Device ID selection) at Control mode 3.7.

The PCM 81 does not transmit SysEx Automation commands.

Check the Automation setting (and the target device ID selection) at Control mode 3.4.
OPERATIONAL PROBLEMS

The PCM 81 will not lock onto an incoming digital signal.
Check the cables that you are using. DO NOT USE ANALOG AUDIO CABLE TO CONNECT DIGITAL AUDIO.

Also check to make sure that your input signal complies with S/PDIF format standards. The PCM 81 will recognize AES professional format signals from an appropriate connector, but will not necessarily read and transmit encoded information accurately.

NO INPUT

- Analog
 Check the analog input connection and make sure that the Analog Lvl control at Control mode 0.1 is set to 100%.

- Digital AES
 Check connection to XLR and make sure that the Digital Lvl control at Control mode 0.2 is set to 100%. Make sure that WordClock (Control mode 0.0) is set to Ext: XLR 48 or 44.1.

- Digital S/PDIF
 Check connection to Coax and make sure that the Digital Lvl control at Control mode 0.2 is set to 100%. Make sure that WordClock (Control mode 0.0) is set to Ext: XLR 48 or 44.1.

NO DIGITAL AUDIO OUTPUT

Check the Analog Lvl and Digital Lvl controls at Control mode 0.1 and 0.2.

NO EFFECTS OUTPUT

Check the setting of Mix Mode at Control mode 1.1. Also verify that any controllers patched to FX Lvl, Input Level, or Mix are not turned off.

POWER ON BEHAVIOR

The PCM 81 performs a series of self tests each time it is powered on, then displays the PCM 81 copyright notice. This should be followed by the display and loading of the last loaded effect. If this sequence does not occur, contact Lexicon Customer Service.

RESTORING FACTORY DEFAULT SETTINGS

You can restore the PCM 81 to its default state without erasing registers by restoring the factory default setup:

1. Press Control.

2. Use the Up and Down buttons to locate Row 4 Setup.

3. Turn SELECT to 4.1 Load.

4. Turn ADJUST counterclockwise to select "Factory Settings".

5. Press Load/*. The PCM 81 will display the message "Setup restored".
Troubleshooting

The table at the right shows the parameters which comprise a setup, along with the factory default setting of each parameter.

REINITIALIZATION

Note: Reinitializing will erase all registers and setups.

The following procedure will return the PCM 81 to the state it was in when shipped from the factory. This includes erasing all registers and setups, as well as restoring all of the default settings:

1. Press Control.
2. Use the Up and Down buttons to locate Row 1 System.
3. Turn SELECT to 1.8 Initialize.
4. Press Store. The PCM 81 will display the message "Are you sure? (Press STORE).

If you don't want to reinitialize your unit, press any button except Store to return to matrix position 1.8.

If you press Store in response to this message, the display will flash "Restoring original factory settings" and your unit will be reinitialized.

<table>
<thead>
<tr>
<th>Control Mode Matrix Location</th>
<th>System Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Word Clock</td>
<td>Internal 48kHz</td>
</tr>
<tr>
<td></td>
<td>Analog Lvl</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Digital Lvl</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Word Size</td>
<td>20 bits</td>
</tr>
<tr>
<td></td>
<td>SCMS</td>
<td>Multi Copy</td>
</tr>
<tr>
<td></td>
<td>Emphasis Bit</td>
<td>Pass Thru</td>
</tr>
<tr>
<td></td>
<td>Output Level</td>
<td>+4dBu</td>
</tr>
<tr>
<td>System</td>
<td>Edit Mode</td>
<td>Go</td>
</tr>
<tr>
<td></td>
<td>Mix Mode</td>
<td>Pgm</td>
</tr>
<tr>
<td></td>
<td>Global Mix Value</td>
<td>100% Wet</td>
</tr>
<tr>
<td></td>
<td>Tempo Mode</td>
<td>Pgm</td>
</tr>
<tr>
<td></td>
<td>Global Tempo Value</td>
<td>120 BPM</td>
</tr>
<tr>
<td></td>
<td>Bypass Mode</td>
<td>InputMute</td>
</tr>
<tr>
<td></td>
<td>Bypass Src</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Pgm Bypass</td>
<td>AllMute</td>
</tr>
<tr>
<td></td>
<td>Mem Protect</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Auto Lock</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Patch Update</td>
<td>Delayed</td>
</tr>
<tr>
<td>MIDI</td>
<td>Receive</td>
<td>OMNI</td>
</tr>
<tr>
<td></td>
<td>Transmit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pgm Change</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Pgm+</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Pgm–</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Map select</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Chain</td>
<td>MIDI</td>
</tr>
<tr>
<td></td>
<td>Automation</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Footpedal</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sw 1</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sw 2</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>ADJUST</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sw 1</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sw 2</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>ADJUST</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Int Clock</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>SysEx</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Device ID</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dump Speed</td>
<td>Slow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempo Mode Matrix Location</th>
<th>System Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo</td>
<td>Source</td>
<td>Internal</td>
</tr>
<tr>
<td>Tap</td>
<td>Display</td>
<td>On</td>
</tr>
</tbody>
</table>
Audio Input

<table>
<thead>
<tr>
<th>Connectors:</th>
<th>Combined 3 pole XLR and 1/4 inch T/R/S phone jacks (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance:</td>
<td>0 dB/BAL switch position: 100kΩ, balanced</td>
</tr>
<tr>
<td></td>
<td>-20 dB/UNBAL switch position: 50kΩ, unbalanced</td>
</tr>
<tr>
<td>Levels:</td>
<td>0 dB/BAL switch position: -2 dBu min for full scale, +20 dBu max</td>
</tr>
<tr>
<td></td>
<td>-20 dB/UNBAL switch position: -22 dBu min for full scale, 0 dBu max</td>
</tr>
<tr>
<td>CMRR:</td>
<td>0 dB/BAL switch position: 50 dB minimum, 10 Hz to 20 kHz</td>
</tr>
</tbody>
</table>

Audio Output

<table>
<thead>
<tr>
<th>Connectors:</th>
<th>1/4 inch T/R/S phone jacks (2); balanced XLRs, pin 2 "high" (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance:</td>
<td>100Ω, balanced</td>
</tr>
<tr>
<td>Levels:</td>
<td>+18dBm, full scale (+4dBu setting) balanced, unbalanced</td>
</tr>
<tr>
<td></td>
<td>+4dBm, full scale (-10dBu setting)</td>
</tr>
</tbody>
</table>

Audio Output (continued)

| Protection: | Relays provided for output muting during power on/off |

A/D Performance

<table>
<thead>
<tr>
<th>Frequency Response:</th>
<th>10Hz to 20kHz, ±0.5dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosstalk:</td>
<td><65dB, 10Hz to 20kHz</td>
</tr>
<tr>
<td>S/N Ratio:</td>
<td>>102dB, 20kHz bandwidth</td>
</tr>
<tr>
<td>THD:</td>
<td><0.003%, 10Hz to 20kHz</td>
</tr>
<tr>
<td>Dynamic Range:</td>
<td>>102dB, 20kHz bandwidth</td>
</tr>
<tr>
<td>Delay:</td>
<td>24 samples (0.54ms for 44.1kHz, 0.50ms for 48kHz)</td>
</tr>
</tbody>
</table>

D/A Performance

<table>
<thead>
<tr>
<th>Frequency Response:</th>
<th>10Hz to 20kHz, ±0.5dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosstalk:</td>
<td><80dB, 10Hz to 20kHz</td>
</tr>
<tr>
<td>S/N Ratio:</td>
<td>>98dB, 20kHz bandwidth</td>
</tr>
<tr>
<td>THD:</td>
<td><0.005%, 10Hz to 20kHz</td>
</tr>
<tr>
<td>Dynamic Range:</td>
<td>>98dB, 20kHz bandwidth</td>
</tr>
</tbody>
</table>

A/A Performance

<table>
<thead>
<tr>
<th>Frequency Response:</th>
<th>10Hz to 20kHz, ±0.5dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosstalk:</td>
<td><55dB, 10Hz to 20kHz</td>
</tr>
<tr>
<td>S/N Ratio:</td>
<td>>96dB, 20kHz bandwidth</td>
</tr>
<tr>
<td>THD:</td>
<td><0.005%, 10Hz to 20kHz</td>
</tr>
<tr>
<td>Dynamic Range:</td>
<td>>96dB, 20kHz bandwidth</td>
</tr>
</tbody>
</table>

Digital Audio Interface

<table>
<thead>
<tr>
<th>Connectors:</th>
<th>Coaxial, RCA type (2); Balanced, XLR (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format:</td>
<td>S/PDIF (IEC-958) consumer and AES/EBU (AES3-1992) professional interface</td>
</tr>
<tr>
<td>Sample Rates:</td>
<td>44.1kHz, 48kHz</td>
</tr>
</tbody>
</table>

Internal Audio Data Paths

<table>
<thead>
<tr>
<th>Conversion:</th>
<th>24 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP:</td>
<td>20 to 24 bits</td>
</tr>
</tbody>
</table>
External Memory Card

<table>
<thead>
<tr>
<th>Connector:</th>
<th>Accepts PCMCIA Type I cards, 68 pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards:</td>
<td>Conforms to PCMCIA 2.0 / JEIDA 4.0</td>
</tr>
<tr>
<td>Card Format:</td>
<td>Supports up to 1MB SRAM (attribute memory not required)</td>
</tr>
</tbody>
</table>

Control Interface

<table>
<thead>
<tr>
<th>MIDI:</th>
<th>5-pin DIN connectors provided for MIDI IN, THRU, and OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footswitch:</td>
<td>1/4 inch T/R/S phone jack provided for 2 independent momentary footswitches</td>
</tr>
<tr>
<td>Foot Controller:</td>
<td>1/4 inch T/R/S phone jack provided for footpedal (100Ω minimum, 10kΩ maximum impedance)</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Dimensions:</th>
<th>Width: 19.0 inches (483mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height:</td>
<td>1.75 inches (45mm)</td>
</tr>
<tr>
<td>Depth:</td>
<td>12.0 inches (305mm)</td>
</tr>
<tr>
<td>Foot mount standard, 1U high</td>
<td></td>
</tr>
<tr>
<td>Weight:</td>
<td>Net: 6.4 lbs (2.9 kg)</td>
</tr>
<tr>
<td>Shipping:</td>
<td>9.5 lbs (4.3 kg)</td>
</tr>
<tr>
<td>Power Requirements:</td>
<td>100-240 VAC, 50-60Hz, 35 W, 3-pin IEC power connector</td>
</tr>
<tr>
<td>RFI/ESD:</td>
<td>Conforms to FCC Class B, EN55022 Class B (CE), IEC 801-2, IEC 801-3</td>
</tr>
<tr>
<td>Environment:</td>
<td>Operating Temperature: 32 to 104°F (0 to 40°C)</td>
</tr>
<tr>
<td>Storage Temperature:</td>
<td>-22 to 167°F (-30 to 70°C)</td>
</tr>
<tr>
<td>Humidity:</td>
<td>Maximum 95% without condensation</td>
</tr>
</tbody>
</table>

Note:

Unless otherwise noted, all audio specifications assume rear-panel switch set to BAL, input level control is set for unity gain (0dB), and analog I/O connections wired for balanced configuration.

Specifications subject to change without notice.
DECLARATION OF CONFORMITY

Application of Council Directive(s):
73/23/EEC and 89/336/EEC

Standard(s) to which Conformity is Declared:
EN 50081-1:1992, EN 50082-1:1992, and EN 55022:1994

Manufacturer:
Lexicon, Inc., 3 Oak Park, Bedford, MA 01730-1441 USA
The equipment identified here conforms to the Directive(s) and Standard(s) specified above.

Type of Equipment:
Digital Audio Effects Processor

Model:
Lexicon PCM 81

Date:
October 23, 1997

Lexicon, Inc.
Vice President of Engineering
3 Oak Park
Bedford, MA 01730-1441 USA
Tel: 781-280-0300
Fax: 781-280-0490

Importers:

Audio SALES
Neusiedlerstrasse 19
Molding A-2340, Austria

TRANSEUROPEAN MUSIC
Pontbleeklaan 41
1731 Zellik, Belgium

NEW MUSIK
Teatergarden
Vestergrade 48 k
8000 Arhus C, Denmark

STIRLING/ITA
Kimberly Road
London NW6 7SF, England

STUDIO TEC KY
Kuusiniemi 2
Espoo SF-02710, Finland

BEYERDYNAMIC FRANCE
7 rue Labie
75017 Paris, France

BON STUDIO LTD.
8 Zaimi St/Exarchia
106.83 Athens, Greece

GRISBY MUSIC PROFESSIONAL
S. S. Adriatica KM 309530
Localita Aspio Terme
60028 Osimo (Ancona), Italy

TM AUDIO
Zomerweg 14
IJsselstein, Holland BV 3402

CAIUS-TECNOLOGIAS AUDIO MUSICA
Rua Sta Catarina 131
4000 Porto, Portugal

TELECO ELECTRONICS S.A.
Gravina 27
28004 Madrid, Spain

SENNHEISER AB
P. O. Box 22035
Stockholm 10422, Sweden
LEXICON, INC. OFFERS THE FOLLOWING WARRANTY ON THIS PRODUCT:

WHAT IS THE DURATION OF THIS WARRANTY?
This warranty will remain in effect for one (1) year from the original date of purchase.

WHO IS COVERED?
This warranty may be enforced by the original purchaser and subsequent owners during the warranty period, provided the original dated sales receipt or other proof of warranty coverage is presented at time of service.

WHAT IS COVERED?
This warranty covers all defects in material and workmanship on this product, except as specified below. The following are not covered:
1. Damage resulting from
 A. Accident, misuse, abuse, or neglect.
 B. Failure to follow instructions contained in the User Guide.
 C. Repair or attempted repair unauthorized by Lexicon, Inc.
 D. Failure to perform recommended periodic maintenance.
 E. Causes other than product defects, including lack of skill, competence, or experience on the part of the owner.
2. Damage occurring during any shipment of this product. Claims for shipping damages must be made with the carrier.
3. Damage to a unit that has been altered, or on which the serial number has been defaced, modified, or removed.

WHAT EXPENSES WILL LEXICON, INC. ASSUME?
Lexicon, Inc. will pay all labor and material expenses for covered items. Payment of shipping charges is discussed in the next section of the warranty.

HOW IS SERVICE OBTAINED?
When this product needs service, write, telephone, or fax Lexicon, Inc. to request information about where the unit should be taken or sent. When making a written request, please include your name, complete address, and daytime telephone number; the product model and serial numbers; and a description of the problem. Do not return the unit to Lexicon, Inc. without prior authorization.

WHEN SHIPPING A PRODUCT FOR SERVICE . . .
1. Pay any initial shipping charges, which are the responsibility of the owner. If necessary repairs are covered by this warranty, Lexicon, Inc. will pay return shipping charges to any destination in the United States using the carrier of our choice.
2. Pack the unit securely. Package insurance is strongly recommended.
3. Include a copy of the original dated sales receipt. (A copy of the original dated sales receipt must be presented whenever warranty service is required.)
4. Do not include accessories such as power cords or user guides unless instructed to do so.

WHAT ARE THE LIMITATIONS OF IMPLIED WARRANTIES?
Any implied warranties, including warranties of merchantability and fitness for a particular purpose, are limited in duration to the length of this warranty.

WHAT CERTAIN DAMAGES ARE EXCLUDED?
Lexicon’s liability for a defective product is limited to repair or replacement of that product, at our option. Lexicon, Inc. shall not be liable for damages based on inconvenience; loss of use of the product; loss of time; interrupted operation; commercial loss; or any other damages, whether incidental, consequential, or otherwise.

HOW DO STATE LAWS RELATE TO THIS WARRANTY?
Some states do not allow limitations on the duration of implied warranties and/or the exclusion or limitation of incidental or consequential damages. As such, the above limitations may not apply.

This warranty is not enforceable outside of North America. This warranty provides specific legal rights. Additional rights may be provided by some states.
Basic Operation

The PCM 81 has 5 basic modes of operation, selected by pressing: Program Banks, Register Banks, Edit, Control or Tempo.

Program Banks and Register Banks

- Press Program Banks to cycle through 6 banks of 50 presets. Press Register Banks to access an internal bank of 50 registers (or PCMCIA card banks) where you can store modified versions of the factory-loaded presets.
- Simultaneously press either Banks button with Up or Down to backstep through the banks.
- Turn SELECT to view all of the effects in the selected bank. A ◯ in front of an effect name indicates that the effect is not loaded. Hold down either Banks button to see the name of the currently running effect.
- Press Load/✱ to load any displayed effect.
- ADJUST acts as a soft knob for adjustment of one or more patched effect parameters.

Edit

- Press Edit to access all available parameters for the currently running effect. Turn ADJUST to alter the value of any displayed parameter.

Control

- Press Control to access system parameters, MIDI controls, and global control of parameters such as Mix, Tempo, and Bypass type.

Tempo

- Any PCM 81 delay parameter (as many as 10 in some effects) and any time-based modulator can be individually assigned an absolute time or tempo value.
- You can set delay times in milliseconds, or in a ratio of echoes/beats which are linked to tempo. When you change tempo, the delay times will change to maintain the same rhythm at the new tempo.
- To set PCM 81 tempo rate, press Tempo. Use SELECT and Up and Down to locate matrix position 0.0. Turn ADJUST to select any Tempo Rate from 40-400 BPM.
- Or, press Tap twice in rhythm to establish the tempo rate you want. Tap is always active, allowing you to change tempo on the fly.

Info

The PCM 81 offers an extensive set of informative display messages which can be activated from the front panel. If you want to know more about the function of a particular button — without actually executing any action — press and hold the button down. While you are holding down the button, an explanatory message will appear on the display.

Note:

You can set and display delay values in units of time, or with tempo values. Whenever a delay value is displayed in Edit mode, press Up and Tempo simultaneously to toggle these two options.
Audition the Programs
- Press Program Banks to cycle through six banks of 50 presets.
- Turn SELECT to view all of the presets in the selected bank.
- Press Load/✱ to load any displayed effect.
- Each preset has one or more parameters patched to the ADJUST knob.
- Turn ADJUST to display the name and the current value of the patch.
- Continue turning ADJUST to change the value of the patch along its entire range. The screen will return to its normal display when you stop turning ADJUST.

Edit

The PCM 81 offers two levels of editing control: Go mode and Pro mode.

Go Mode
- Go mode gives you access to a specific set of as many as 10 parameters for each of the 300 presets. We have designed each set of parameters to allow you to make changes to the effect without losing the character of the sound.
- In Go mode, press Edit to access the most useful preset parameters for the currently running effect.
- Turn SELECT to view the available parameters.
- Turn ADJUST to change the value of any displayed parameter.

Pro Mode
- Pro mode gives you access to the full effect edit matrix whenever you press Edit. The edit matrix contains all effect parameters, as well as Patching and Modulation controls.
- The PCM 81 is shipped in Go mode. To change the Edit mode, press Control, use SELECT and Up and Down to locate matrix position 1.0. Turn ADJUST to select Go or Pro.

Compare
- When you turn ADJUST, or perform any other parameter edits, the front panel Compare light will go on to indicate that the program has been modified since it was last stored. Press Compare to hear the unedited version. Press again to return to your edited program.

Bypass
- Press Bypass to mute the input signal. A Bypass Mode parameter at Control mode 1.3 allows you to select input muting, output muting, input and output muting, or bypass as alternatives. You can also assign the bypass function to an external controller.

Store
- Press Store. The current program name will appear with a flashing cursor over the first letter of the name.
- Turn ADJUST to select a new character. Press Up or Down to select a new type of character (upper or lower case, numeric, symbolic, or blank). Turn SELECT to move the cursor to a new character.
- Press Load/✱ to display the name currently assigned to the ADJUST knob patch. Use the same procedure for entering a new name.
- Press Load/✱ twice to move the✱ to the Register ID number in the lower left corner of the display. Use ADJUST or SELECT to choose the register where you want the effect saved.
- When the display shows the register number you want, press Store. Press Store in response to the “Are you sure?” message to save your new effect to the displayed register location.

Note:
The PCM 81 will not perform a store instruction if the Memory Protection option is on. To turn Memory Protection off, press Control. Use Up and Down and SELECT to locate matrix position 1.5. Turn ADJUST to display Off.

In addition to these easy plug and play techniques, the PCM 81 provides extensive system control via front panel patching or MIDI. For complete details on these and other features, read the PCM 81 Owner's Manual.